These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 23367276)

  • 1. Noise reduction using anisotropic diffusion filter in inverse electrocardiology.
    Gavgani AM; Dogrusoz YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5919-22. PubMed ID: 23367276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Kalman filter-based approach to reduce the effects of geometric errors and the measurement noise in the inverse ECG problem.
    Aydin U; Dogrusoz YS
    Med Biol Eng Comput; 2011 Sep; 49(9):1003-13. PubMed ID: 21472435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ML and MAP estimation of parameters for the Kalman filter and smoother applied to electrocardiographic imaging.
    Erenler T; Serinagaoglu Dogrusoz Y
    Med Biol Eng Comput; 2019 Oct; 57(10):2093-2113. PubMed ID: 31363890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The inverse problem of electrocardiography: a solution in terms of single- and double-layer sources of the epicardial surface.
    Horácek BM; Clements JC
    Math Biosci; 1997 Sep; 144(2):119-54. PubMed ID: 9258003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Truncated total least squares: a new regularization method for the solution of ECG inverse problems.
    Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1327-35. PubMed ID: 18390323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic median-diffusion for filtering noisy electrocardiogram signals.
    de Melo MA; Kim HY; Nicolosi DE
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2562-5. PubMed ID: 19163226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of potential- and activation-based formulations for the inverse problem of electrocardiology.
    Cheng LK; Bodley JM; Pullan AJ
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):11-22. PubMed ID: 12617520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The inverse problem in electrocardiography: solutions in terms of epicardial potentials.
    Rudy Y; Messinger-Rapport BJ
    Crit Rev Biomed Eng; 1988; 16(3):215-68. PubMed ID: 3064971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epicardial potentials computed from the body surface potential map using inverse electrocardiography and an individualised torso model improve sensitivity for acute myocardial infarction diagnosis.
    Daly MJ; Finlay DD; Guldenring D; Bond RR; McCann AJ; Scott PJ; Adgey JA; Harbinson MT
    Eur Heart J Acute Cardiovasc Care; 2017 Dec; 6(8):728-735. PubMed ID: 27669728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Tikhonov regularization with linearly constrained optimization: application to the inverse epicardial potential solution.
    Iakovidis I; Gulrajani RM
    Math Biosci; 1992 Nov; 112(1):55-80. PubMed ID: 1421775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for regularization parameter determination in the inverse problem of electrocardiography.
    Johnston PR; Gulrajani RM
    IEEE Trans Biomed Eng; 1997 Jan; 44(1):19-39. PubMed ID: 9214781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On epicardial potential reconstruction using regularization schemes with the L1-norm data term.
    Shou G; Xia L; Liu F; Jiang M; Crozier S
    Phys Med Biol; 2011 Jan; 56(1):57-72. PubMed ID: 21119225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of measured and computed epicardial potentials from a patient-specific inverse model.
    Budgett DM; Monro DM; Edwards SW; Stanbridge RD
    J Electrocardiol; 1993; 26 Suppl():165-73. PubMed ID: 8189121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of different choices for the regularization parameter in inverse electrocardiography models.
    Shou G; Jiang M; Xia L; Wei Q; Liu F; Crozier S
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3903-6. PubMed ID: 17945815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of cardiac motion on solution of the electrocardiography inverse problem.
    Jiang M; Xia L; Shou G; Wei Q; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):923-31. PubMed ID: 19272916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regularization Techniques for ECG Imaging during Atrial Fibrillation: A Computational Study.
    Figuera C; Suárez-Gutiérrez V; Hernández-Romero I; Rodrigo M; Liberos A; Atienza F; Guillem MS; Barquero-Pérez Ó; Climent AM; Alonso-Atienza F
    Front Physiol; 2016; 7():466. PubMed ID: 27790158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of two methods for choosing the regularization parameter for the inverse problem of electrocardiography.
    Lowther DA; Throne RD; Olson LG; Windle JR
    Biomed Sci Instrum; 2002; 38():257-61. PubMed ID: 12085612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inverse electrocardiographic transformations: dependence on the number of epicardial regions and body surface data points.
    Johnston PR; Walker SJ; Hyttinen JA; Kilpatrick D
    Math Biosci; 1994 Apr; 120(2):165-87. PubMed ID: 8204983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise-adaptive nonlinear diffusion filtering of MR images with spatially varying noise levels.
    Samsonov AA; Johnson CR
    Magn Reson Med; 2004 Oct; 52(4):798-806. PubMed ID: 15389962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parameter choice methods and temporal filtering for the generalized eigensystem method applied to the inverse problem of electrocardiography.
    Throne RD; Olson LG; Windle JR
    Biomed Sci Instrum; 2001; 37():37-42. PubMed ID: 11347419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.