These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23367324)

  • 1. An automatic and user-driven training method for locomotion mode recognition for artificial leg control.
    Zhang X; Wang D; Yang Q; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6116-9. PubMed ID: 23367324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of locomotion mode recognition errors on volitional control of powered above-knee prostheses.
    Zhang F; Liu M; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):64-72. PubMed ID: 25486645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an Environment-Aware Locomotion Mode Recognition System for Powered Lower Limb Prostheses.
    Liu M; Wang D; Helen Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):434-43. PubMed ID: 25879962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees.
    Khademi G; Mohammadi H; Simon D
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions.
    Zhang F; Liu M; Huang H
    PLoS One; 2015; 10(7):e0133965. PubMed ID: 26197084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of machine learning and deep learning-based methods for locomotion mode recognition using a single inertial measurement unit.
    Vu HTT; Cao HL; Dong D; Verstraten T; Geeroms J; Vanderborght B
    Front Neurorobot; 2022; 16():923164. PubMed ID: 36524219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Classification Method for User-Independent Intent Recognition for Transfemoral Amputees Using Powered Lower Limb Prostheses.
    Young AJ; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2016 Feb; 24(2):217-25. PubMed ID: 25794392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses.
    Zhang F; Liu M; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2768-71. PubMed ID: 23366499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding LSTM Network Behaviour of IMU-Based Locomotion Mode Recognition for Applications in Prostheses and Wearables.
    Sherratt F; Plummer A; Iravani P
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Adaptive Classification Strategy for Reliable Locomotion Mode Recognition.
    Liu M; Zhang F; Huang HH
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28869537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.
    Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A locomotion intent prediction system based on multi-sensor fusion.
    Chen B; Zheng E; Wang Q
    Sensors (Basel); 2014 Jul; 14(7):12349-69. PubMed ID: 25014097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locomotion Mode Recognition With Robotic Transtibial Prosthesis in Inter-Session and Inter-Day Applications.
    Zheng E; Wang Q; Qiao H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1836-1845. PubMed ID: 31403436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors.
    Shin D; Lee S; Hwang S
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward design of an environment-aware adaptive locomotion-mode-recognition system.
    Du L; Zhang F; Liu M; Huang H
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2716-25. PubMed ID: 22996721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary design of a terrain recognition system.
    Zhang F; Fang Z; Liu M; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5452-5. PubMed ID: 22255571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary results for an adaptive pattern recognition system for novel users using a powered lower limb prosthesis.
    Spanias JA; Simon AM; Perreault EJ; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5083-5086. PubMed ID: 28269411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swing-phase detection of locomotive mode transitions for smooth multi-functional robotic lower-limb prosthesis control.
    Haque MR; Islam MR; Sazonov E; Shen X
    Front Robot AI; 2024; 11():1267072. PubMed ID: 38680622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward Minimal-Sensing Locomotion Mode Recognition for a Powered Knee-Ankle Prosthesis.
    Khademi G; Simon D
    IEEE Trans Biomed Eng; 2021 Mar; 68(3):967-979. PubMed ID: 32784127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.