These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23367411)

  • 1. Viscoelastic model for redundancy resolution of the human arm via the swivel angle: applications for upper limb exoskeleton control.
    Kim H; Roldan JR; Li Z; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6471-4. PubMed ID: 23367411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redundancy resolution of a human arm for controlling a seven DOF wearable robotic system.
    Kim H; Miller LM; Al-Refai A; Brand M; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3471-4. PubMed ID: 22255087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redundancy resolution of the human arm and an upper limb exoskeleton.
    Kim H; Miller LM; Byl N; Abrams GM; Rosen J
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1770-9. PubMed ID: 22510944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Admittance control of an upper limb exoskeleton--reduction of energy exchange.
    Kim H; Miller LM; Li Z; Roldan JR; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6467-70. PubMed ID: 23367410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From reaching to reach-to-grasp: the arm posture difference and its implications on human motion control strategy.
    Li Z; Milutinović D; Rosen J
    Exp Brain Res; 2017 May; 235(5):1627-1642. PubMed ID: 28265688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematic Redundancy Analysis during Goal-Directed Motion for Trajectory Planning of an Upper-Limb Exoskeleton Robot.
    Wang C; Peng L; Hou ZG; Li J; Luo L; Chen S; Wang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5251-5255. PubMed ID: 31947042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Task-relevance of grasping-related degrees of freedom in reach-to-grasp movements.
    Li Z; Roldan JR; Milutinovic D; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6903-6. PubMed ID: 25571583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redundancy and joint limits of a seven degree of freedom upper limb exoskeleton.
    Miller LM; Kim H; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8154-7. PubMed ID: 22256234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rotational axis approach for resolving the kinematic redundancy of the human arm in reaching movements.
    Li Z; Roldan JR; Milutinović D; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2507-10. PubMed ID: 24110236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic Synergy of Multi-DoF Movement in Upper Limb and Its Application for Rehabilitation Exoskeleton Motion Planning.
    Tang S; Chen L; Barsotti M; Hu L; Li Y; Wu X; Bai L; Frisoli A; Hou W
    Front Neurorobot; 2019; 13():99. PubMed ID: 31849635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Age, Gender and Level of Co-contraction on Elbow and Shoulder Rotational Stiffness and Damping in the Impulsively End-Loaded Upper Extremity.
    Lee Y; Ashton-Miller JA
    Ann Biomed Eng; 2015 May; 43(5):1112-22. PubMed ID: 25395216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moment arms and lengths of human upper limb muscles as functions of joint angles.
    Pigeon P; Yahia L; Feldman AG
    J Biomech; 1996 Oct; 29(10):1365-70. PubMed ID: 8884483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the cost functions for the control of the human arm movement.
    Cruse H; Wischmeyer E; Brüwer M; Brockfeld P; Dress A
    Biol Cybern; 1990; 62(6):519-28. PubMed ID: 2357475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial Map of Synthesized Criteria for the Redundancy Resolution of Human Arm Movements.
    Li Z; Milutinovic D; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1020-30. PubMed ID: 25532187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle-Effort-Minimization-Inspired Kinematic Redundancy Resolution for Replicating Natural Posture of Human Arm.
    Li Q; Xia Y; Wang X; Xin P; Chen W; Xiong C
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2341-2351. PubMed ID: 35951574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination of arm movements in three-dimensional space. Sensorimotor mapping during drawing movement.
    Soechting JF; Lacquaniti F; Terzuolo CA
    Neuroscience; 1986 Feb; 17(2):295-311. PubMed ID: 3703244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method to determine the orientation of the upper arm about its longitudinal axis during dynamic motions.
    Gordon BJ; Dapena J
    J Biomech; 2013 Jan; 46(1):97-101. PubMed ID: 23141956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.