These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23367457)

  • 1. Assessment of hemodynamic load components affecting optimization of cardiac resynchronization therapy by lumped parameter mode.
    Xu K; Butlin M; Avolio AP
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6661-4. PubMed ID: 23367457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute biventricular hemodynamic effects of cardiac resynchronization therapy in right bundle branch block.
    Houston BA; Sturdivant JL; Yu Y; Gold MR
    Heart Rhythm; 2018 Oct; 15(10):1525-1532. PubMed ID: 29800750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whether noninvasive optimization of AV and VV delays improves the response to cardiac resynchronization therapy.
    Urbanek B; Chudzik M; Klimczak A; Rosiak M; Lewek J; Wranicz JK
    Cardiol J; 2013; 20(4):411-7. PubMed ID: 23913460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuously adjusting CRT therapy: clinical impact of adaptive cardiac resynchronization therapy.
    Houmsse M; Abraham WT
    Expert Rev Cardiovasc Ther; 2014 May; 12(5):541-8. PubMed ID: 24678730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impedance cardiography: a useful and reliable tool in optimization of cardiac resynchronization devices.
    Heinroth KM; Elster M; Nuding S; Schlegel F; Christoph A; Carter J; Buerke M; Werdan K
    Europace; 2007 Sep; 9(9):744-50. PubMed ID: 17496288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resynchronization improves heart-arterial coupling reducing arterial load determinants.
    Zócalo Y; Bia D; Armentano RL; González-Moreno J; Varela G; Calleriza F; Reyes-Caorsi W
    Europace; 2013 Apr; 15(4):554-65. PubMed ID: 23143859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of left ventricular electrical delay on the acute hemodynamic response with cardiac resynchronization therapy.
    Gold MR; Leman RB; Wold N; Sturdivant JL; Yu Y
    J Cardiovasc Electrophysiol; 2014 Jun; 25(6):624-30. PubMed ID: 24446891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of hemodynamic versus dyssynchrony assessment for interventricular delay optimization with echocardiography in cardiac resynchronization therapy.
    Doltra A; Vidal B; Silva E; Mont L; Tamborero D; Castel MÁ; Tolosana JM; Berruezo A; Brugada J; Sitges M
    Pacing Clin Electrophysiol; 2011 Aug; 34(8):984-90. PubMed ID: 21438894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of the best pacing configuration and atrioventricular and interventricular delays optimization in cardiac resynchronization therapy.
    Socie P; Squara F; Semichon M; Thomas O; Khemache A; Riccini P; Squara P; Algalarrondo V; Moubarak G
    Pacing Clin Electrophysiol; 2018 Apr; 41(4):362-367. PubMed ID: 29405324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous His Bundle and Left Ventricular Pacing for Optimal Cardiac Resynchronization Therapy Delivery: Acute Hemodynamic Assessment by Pressure-Volume Loops.
    Padeletti L; Pieragnoli P; Ricciardi G; Innocenti L; Checchi L; Padeletti M; Michelucci A; Picariello F; Valsecchi S
    Circ Arrhythm Electrophysiol; 2016 May; 9(5):. PubMed ID: 27162032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac resynchronization therapy (CRT) with right ventricular sense triggered left ventricular pacing benefits for the hemodynamics compared with standard CRT for chronic congestive heart failure: A cross-over study.
    Pu LJ; Wang Y; Zhao L; Luo ZL; Hua BT; Han MH; Li SM; Yang J; Li L; Peng YZ; Guo T
    Cardiol J; 2015; 22(1):80-6. PubMed ID: 25179313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac Resynchronization Therapy Optimization: A Comprehensive Approach.
    Katbeh A; Van Camp G; Barbato E; Galderisi M; Trimarco B; Bartunek J; Vanderheyden M; Penicka M
    Cardiology; 2019; 142(2):116-128. PubMed ID: 31117077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical outcomes with synchronized left ventricular pacing: analysis of the adaptive CRT trial.
    Birnie D; Lemke B; Aonuma K; Krum H; Lee KL; Gasparini M; Starling RC; Milasinovic G; Gorcsan J; Houmsse M; Abeyratne A; Sambelashvili A; Martin DO
    Heart Rhythm; 2013 Sep; 10(9):1368-74. PubMed ID: 23851059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longer Left Ventricular Electric Delay Reduces Mitral Regurgitation After Cardiac Resynchronization Therapy: Mechanistic Insights From the SMART-AV Study (SmartDelay Determined AV Optimization: A Comparison to Other AV Delay Methods Used in Cardiac Resynchronization Therapy).
    Chatterjee NA; Gold MR; Waggoner AD; Picard MH; Stein KM; Yu Y; Meyer TE; Wold N; Ellenbogen KA; Singh JP
    Circ Arrhythm Electrophysiol; 2016 Nov; 9(11):. PubMed ID: 27906653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusion-optimized intervals (FOI): a new method to achieve the narrowest QRS for optimization of the AV and VV intervals in patients undergoing cardiac resynchronization therapy.
    Arbelo E; Tolosana JM; Trucco E; Penela D; Borràs R; Doltra A; Andreu D; Aceña M; Berruezo A; Sitges M; Mansour F; Castel A; Matas M; Brugada J; Mont L
    J Cardiovasc Electrophysiol; 2014 Mar; 25(3):283-92. PubMed ID: 24237881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Body surface mapping using an ECG belt to characterize electrical heterogeneity for different left ventricular pacing sites during cardiac resynchronization: Relationship with acute hemodynamic improvement.
    Johnson WB; Vatterott PJ; Peterson MA; Bagwe S; Underwood RD; Bank AJ; Gage RM; Ramza B; Foreman BW; Splett V; Haddad T; Gillberg JM; Ghosh S
    Heart Rhythm; 2017 Mar; 14(3):385-391. PubMed ID: 27871987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac resynchronization therapy: could a numerical simulator be a useful tool in order to predict the response of the biventricular pacemaker synchronization?
    De Lazzari C; D'Ambrosi A; Tufano F; Fresiello L; Garante M; Sergiacomi R; Stagnitti F; Caldarera CM; Alessandri N
    Eur Rev Med Pharmacol Sci; 2010 Nov; 14(11):969-78. PubMed ID: 21284346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulus-effect relations for left ventricular growth obtained with a simple multi-scale model: the influence of hemodynamic feedback.
    Rondanina E; Bovendeerd PHM
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2111-2126. PubMed ID: 32358671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Left ventricular-only pacing in heart failure patients with normal atrioventricular conduction improves global function and left ventricular regional mechanics compared with biventricular pacing: an adaptive cardiac resynchronization therapy sub-study.
    Burns KV; Gage RM; Curtin AE; Gorcsan J; Bank AJ
    Eur J Heart Fail; 2017 Oct; 19(10):1335-1343. PubMed ID: 28653458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Device-Based Algorithm Provides Optimal Hemodynamics During Exercise in Patients With Cardiac Resynchronization Therapy.
    Kasagawa A; Nakajima I; Izumo M; Nakayama Y; Yamada M; Takano M; Matsuda H; Furukawa T; Miyazaki H; Harada T; Akashi YJ
    Circ J; 2019 Sep; 83(10):2002-2009. PubMed ID: 31462585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.