These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23367470)

  • 1. Simultaneous brain-computer interfacing and motor control: expanding the reach of non-invasive BCIs.
    Cheung W; Sarma D; Scherer R; Rao RP
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6715-8. PubMed ID: 23367470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approach to improve the performance of subject-independent BCIs-based on motor imagery allocating subjects by gender.
    Cantillo-Negrete J; Gutierrez-Martinez J; Carino-Escobar RI; Carrillo-Mora P; Elias-Vinas D
    Biomed Eng Online; 2014 Dec; 13():158. PubMed ID: 25476924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces.
    Rodrigues PG; Filho CAS; Attux R; Castellano G; Soriano DC
    Med Biol Eng Comput; 2019 Aug; 57(8):1709-1725. PubMed ID: 31127535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D
    Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating a four-class motor-imagery-based optical brain-computer interface.
    Batula AM; Ayaz H; Kim YE
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2000-3. PubMed ID: 25570375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the use of tactile feedback in an ERP-based auditory BCI.
    Schreuder M; Thurlings ME; Brouwer AM; Van Erp JB; Tangermann M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6707-10. PubMed ID: 23367468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study.
    Jeunet C; Jahanpour E; Lotte F
    J Neural Eng; 2016 Jun; 13(3):036024. PubMed ID: 27172246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the effect of EEG-BCI on the simultaneous execution of flight simulation and attentional tasks.
    Vecchiato G; Borghini G; Aricò P; Graziani I; Maglione AG; Cherubino P; Babiloni F
    Med Biol Eng Comput; 2016 Oct; 54(10):1503-13. PubMed ID: 26645694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concurrent control of a brain-computer interface and natural overt movements.
    Bashford L; Wu J; Sarma D; Collins K; Rao RPN; Ojemann JG; Mehring C
    J Neural Eng; 2018 Dec; 15(6):066021. PubMed ID: 30303130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor imagery-induced EEG patterns in individuals with spinal cord injury and their impact on brain-computer interface accuracy.
    Müller-Putz GR; Daly I; Kaiser V
    J Neural Eng; 2014 Jun; 11(3):035011. PubMed ID: 24835837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning to modulate sensorimotor rhythms with stereo auditory feedback for a brain-computer interface.
    McCreadie KA; Coyle DH; Prasad G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6711-4. PubMed ID: 23367469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial filter adaptation based on the divergence framework for motor imagery EEG classification.
    Xinyang Li ; Cuntai Guan ; Kai Keng Ang ; Haihong Zhang ; Sim Heng Ong
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1847-50. PubMed ID: 25570337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Robust Low-Cost EEG Motor Imagery-Based Brain-Computer Interface.
    Yohanandan SAC; Kiral-Kornek I; Tang J; Mshford BS; Asif U; Harrer S
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5089-5092. PubMed ID: 30441485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Motor Imagery Training Using a Hybrid BCI With Feedback.
    Yu T; Xiao J; Wang F; Zhang R; Gu Z; Cichocki A; Li Y
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1706-17. PubMed ID: 25680205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the performance of an EEG-based motor imagery brain computer interface using task evoked changes in pupil diameter.
    Rozado D; Duenser A; Howell B
    PLoS One; 2015; 10(3):e0121262. PubMed ID: 25816285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface.
    Hänselmann S; Schneiders M; Weidner N; Rupp R
    J Neuroeng Rehabil; 2015 Aug; 12():71. PubMed ID: 26303933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroencephalography-based endogenous brain-computer interface for online communication with a completely locked-in patient.
    Han CH; Kim YW; Kim DY; Kim SH; Nenadic Z; Im CH
    J Neuroeng Rehabil; 2019 Jan; 16(1):18. PubMed ID: 30700310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG-Based BCIs on Motor Imagery Paradigm Using Wearable Technologies: A Systematic Review.
    Saibene A; Caglioni M; Corchs S; Gasparini F
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36905004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating EEG and MEG Signals to Improve Motor Imagery Classification in Brain-Computer Interface.
    Corsi MC; Chavez M; Schwartz D; Hugueville L; Khambhati AN; Bassett DS; De Vico Fallani F
    Int J Neural Syst; 2019 Feb; 29(1):1850014. PubMed ID: 29768971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.