These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23367490)

  • 1. Predicting the initiation of minimum-jerk submovements in three-dimensional target-oriented human arm trajectories.
    Liao JY; Kirsch RF
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6797-800. PubMed ID: 23367490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing and predicting submovements during human three-dimensional arm reaches.
    Liao JY; Kirsch RF
    PLoS One; 2014; 9(7):e103387. PubMed ID: 25057968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study on feedback error learning controller for functional electrical stimulation: generation of target trajectories by minimum jerk model.
    Watanabe T; Fukushima K
    Artif Organs; 2011 Mar; 35(3):270-4. PubMed ID: 21401673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origins of submovements in movements of elderly adults.
    Fradet L; Lee G; Dounskaia N
    J Neuroeng Rehabil; 2008 Nov; 5():28. PubMed ID: 19014548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements.
    Ben-Itzhak S; Karniel A
    Neural Comput; 2008 Mar; 20(3):779-812. PubMed ID: 18045017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can a kinetic optimization criterion predict both arm trajectory and final arm posture?
    Wada Y; Yamanaka K; Soga Y; Tsuyuki K; Kawato M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1197-200. PubMed ID: 17946449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for the generation of movements requiring endpoint precision.
    Milner TE
    Neuroscience; 1992 Jul; 49(2):487-96. PubMed ID: 1436478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D human arm reaching movement planning with principal patterns in successive phases.
    Dehghani S; Bahrami F
    J Comput Neurosci; 2020 Aug; 48(3):265-280. PubMed ID: 32458184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pick to place trajectories in human arm training environment.
    Ziherl J; Podobnik J; Sikic M; Munih M
    Technol Health Care; 2009; 17(4):323-35. PubMed ID: 19822948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elbow angle generation during activities of daily living using a submovement prediction model.
    Naghibi SS; Fallah A; Maleki A; Ghassemi F
    Biol Cybern; 2020 Jun; 114(3):389-402. PubMed ID: 32518963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manual interception of moving targets. II. On-line control of overlapping submovements.
    Lee D; Port NL; Georgopoulos AP
    Exp Brain Res; 1997 Oct; 116(3):421-33. PubMed ID: 9372291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium point control of a monkey arm simulator by a fast learning tree structured artificial neural network.
    Dornay M; Sanger TD
    Biol Cybern; 1993; 68(6):499-508. PubMed ID: 8324058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative examinations for multi joint arm trajectory planning--using a robust calculation algorithm of the minimum commanded torque change trajectory.
    Wada Y; Kaneko Y; Nakano E; Osu R; Kawato M
    Neural Netw; 2001 May; 14(4-5):381-93. PubMed ID: 11411627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Submovement composition of head movement.
    Chen LL; Lee D; Fukushima K; Fukushima J
    PLoS One; 2012; 7(11):e47565. PubMed ID: 23139749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.
    Blana D; Kirsch RF; Chadwick EK
    Med Biol Eng Comput; 2009 May; 47(5):533-42. PubMed ID: 19343388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of trajectory planning models for arm-reaching movements based on energy cost.
    Nishii J; Taniai Y
    Neural Comput; 2009 Sep; 21(9):2634-47. PubMed ID: 19548798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency sensitive motion control for a single joint arm model.
    Park H; Durand DM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5416-9. PubMed ID: 17947141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model.
    Nakano E; Imamizu H; Osu R; Uno Y; Gomi H; Yoshioka T; Kawato M
    J Neurophysiol; 1999 May; 81(5):2140-55. PubMed ID: 10322055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-based neural decoding of reaching movements: a maximum likelihood approach.
    Kemere C; Shenoy KV; Meng TH
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):925-32. PubMed ID: 15188860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer of learning between the arms during bimanual reaching.
    Harley LR; Prilutsky BI
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6785-8. PubMed ID: 23367487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.