These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23367912)

  • 1. Dynamical Bayesian inference of time-evolving interactions: from a pair of coupled oscillators to networks of oscillators.
    Duggento A; Stankovski T; McClintock PV; Stefanovska A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061126. PubMed ID: 23367912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inference of time-evolving coupled dynamical systems in the presence of noise.
    Stankovski T; Duggento A; McClintock PV; Stefanovska A
    Phys Rev Lett; 2012 Jul; 109(2):024101. PubMed ID: 23030162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical inference: where phase synchronization and generalized synchronization meet.
    Stankovski T; McClintock PV; Stefanovska A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062909. PubMed ID: 25019853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explosive synchronization transitions in complex neural networks.
    Chen H; He G; Huang F; Shen C; Hou Z
    Chaos; 2013 Sep; 23(3):033124. PubMed ID: 24089960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting anomalous phase synchronization from time series.
    Tokuda IT; Kumar Dana S; Kurths J
    Chaos; 2008 Jun; 18(2):023134. PubMed ID: 18601500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dynamical systems approach for estimating phase interactions between rhythms of different frequencies from experimental data.
    Onojima T; Goto T; Mizuhara H; Aoyagi T
    PLoS Comput Biol; 2018 Jan; 14(1):e1005928. PubMed ID: 29337999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impulsive synchronization of coupled dynamical networks with nonidentical Duffing oscillators and coupling delays.
    Wang Z; Duan Z; Cao J
    Chaos; 2012 Mar; 22(1):013140. PubMed ID: 22463016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating the structure of small dynamical networks from the state time evolution of one node.
    Autariello R; Dzakpasu R; Sorrentino F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012915. PubMed ID: 23410412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronization of pulse-coupled oscillators with a refractory period and frequency distribution for a wireless sensor network.
    Konishi K; Kokame H
    Chaos; 2008 Sep; 18(3):033132. PubMed ID: 19045470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive synchronization of coupled chaotic oscillators.
    Ravoori B; Cohen AB; Setty AV; Sorrentino F; Murphy TE; Ott E; Roy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056205. PubMed ID: 20365058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spurious detection of phase synchronization in coupled nonlinear oscillators.
    Xu L; Chen Z; Hu K; Stanley HE; Ivanov PCh
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):065201. PubMed ID: 16906897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generic behavior of master-stability functions in coupled nonlinear dynamical systems.
    Huang L; Chen Q; Lai YC; Pecora LM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036204. PubMed ID: 19905197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of coupling direction: application to cardiorespiratory interaction.
    Rosenblum MG; Cimponeriu L; Bezerianos A; Patzak A; Mrowka R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041909. PubMed ID: 12005875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplitude death in networks of delay-coupled delay oscillators.
    Höfener JM; Sethia GC; Gross T
    Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120462. PubMed ID: 23960220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inverse approach to chronotaxic systems for single-variable time series.
    Clemson PT; Suprunenko YF; Stankovski T; Stefanovska A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032904. PubMed ID: 24730910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks.
    Feng CF; Xu XJ; Wang SJ; Wang YH
    Chaos; 2008 Jun; 18(2):023117. PubMed ID: 18601484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the phase of synchronized oscillators.
    Revzen S; Guckenheimer JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051907. PubMed ID: 19113155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal weighted networks of phase oscillators for synchronization.
    Tanaka T; Aoyagi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046210. PubMed ID: 18999511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronization in interacting populations of heterogeneous oscillators with time-varying coupling.
    So P; Cotton BC; Barreto E
    Chaos; 2008 Sep; 18(3):037114. PubMed ID: 19045488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of coupling between oscillators from short time series via phase dynamics modeling: limitations and application to EEG data.
    Smirnov DA; Bodrov MB; Velazquez JL; Wennberg RA; Bezruchko BP
    Chaos; 2005 Jun; 15(2):24102. PubMed ID: 16035902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.