These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23367946)

  • 1. Structure of electrorheological fluids: a dielectric study of chain formation.
    Horváth B; Szalai I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061403. PubMed ID: 23367946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induced permittivity increment of electrorheological fluids in an applied electric field in association with chain formation: A Brownian dynamics simulation study.
    Fertig D; Boda D; Szalai I
    Phys Rev E; 2021 Jun; 103(6-1):062608. PubMed ID: 34271759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic dielectric response of electrorheological fluids in drag flow.
    Horváth B; Szalai I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042308. PubMed ID: 26565241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric and electrical properties of electrorheological carbon suspensions.
    Negita K; Misono Y; Yamaguchi T; Shinagawa J
    J Colloid Interface Sci; 2008 May; 321(2):452-8. PubMed ID: 18342876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Electrorheological Performance of Nb-Doped TiO2 Microspheres Based Suspensions and Their Behavior Characteristics in Low-Frequency Dielectric Spectroscopy.
    Guo X; Chen Y; Su M; Li D; Li G; Li C; Tian Y; Hao C; Lei Q
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26624-32. PubMed ID: 26570989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient response of an electrorheological fluid under square-wave electric field excitation.
    Tian Y; Li C; Zhang M; Meng Y; Wen S
    J Colloid Interface Sci; 2005 Aug; 288(1):290-7. PubMed ID: 15927589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrorheological fluids based on glycerol-activated titania gel particles and silicone oil with high yield strength.
    Yin JB; Zhao XP
    J Colloid Interface Sci; 2003 Jan; 257(2):228-36. PubMed ID: 16256474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of electrorheological fluids under an electric field and a shear flow: experiment and computer simulation.
    Cao JG; Huang JP; Zhou LW
    J Phys Chem B; 2006 Jun; 110(24):11635-9. PubMed ID: 16800457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between Generated Shear Stress and Generated Permittivity for the Electrorheological Response of Colloidal Silica Suspensions.
    Saimoto Y; Satoh T; Konno M
    J Colloid Interface Sci; 1999 Nov; 219(1):135-143. PubMed ID: 10527579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ground state of a polydisperse electrorheological solid: beyond the dipole approximation.
    Sun H; Yu KW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 1):011506. PubMed ID: 12636505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of the Dielectric Properties of Dispersed Particles with the Electrorheological Effect.
    Hao T; Xu Z; Xu Y
    J Colloid Interface Sci; 1997 Jun; 190(2):334-40. PubMed ID: 9241175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrohydrodynamic fibrillation governed enhanced thermal transport in dielectric colloids under a field stimulus.
    Dhar P; Maganti LS; Harikrishnan AR
    Soft Matter; 2018 May; 14(21):4278-4286. PubMed ID: 29781488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gelation of chitin and chitosan dispersed suspensions under electric field: effect of degree of deacetylation.
    Ko YG; Shin SS; Choi US; Park YS; Woo JW
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1289-98. PubMed ID: 21425802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new approach of enhancing the shear stress of electrorheological fluids of montmorillonite nanocomposite by emulsion intercalation of poly-N-methaniline.
    Lu J; Zhao X
    J Colloid Interface Sci; 2004 May; 273(2):651-7. PubMed ID: 15082406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Interfacial Polarization-Induced Electrorheological Effect.
    Hao T
    J Colloid Interface Sci; 1998 Oct; 206(1):240-246. PubMed ID: 9761649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrorheological suspensions of laponite in oil: rheometry studies.
    Parmar KP; Méheust Y; Schjelderupsen B; Fossum JO
    Langmuir; 2008 Mar; 24(5):1814-22. PubMed ID: 18215081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation of the frequency dependence of the electrorheological effect.
    Lan Y; Huang CK; Men S; Lu K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 1):021507. PubMed ID: 15447496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrorheological properties and microstructure of silica suspensions.
    Gehin C; Persello J; Charraut D; Cabane B
    J Colloid Interface Sci; 2004 May; 273(2):658-67. PubMed ID: 15082407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrorheological Response and Structure Growth of Colloidal Silica Suspensions.
    Satoh T; Ashitaka T; Orihara S; Saimoto Y; Konno M
    J Colloid Interface Sci; 2001 Feb; 234(1):19-23. PubMed ID: 11161485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saturated orientational polarization of polar molecules in giant electrorheological fluids.
    Tan P; Tian WJ; Wu XF; Huang JY; Zhou LW; Huang JP
    J Phys Chem B; 2009 Jul; 113(27):9092-7. PubMed ID: 19530664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.