These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 23367947)

  • 21. Physics of heat generation using magnetic nanoparticles for hyperthermia.
    Dennis CL; Ivkov R
    Int J Hyperthermia; 2013 Dec; 29(8):715-29. PubMed ID: 24131317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast magnetization reversal of a magnetic nanoparticle induced by cosine chirp microwave field pulse.
    Islam MT; Akanda MAS; Pikul MAJ; Wang X
    J Phys Condens Matter; 2021 Dec; 34(10):. PubMed ID: 34874303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of the optimum number and location of nanoparticle injections and the specific loss power for ideal hyperthermia.
    Boroon MP; Ayani MB; Bazaz SR
    J Therm Biol; 2018 Feb; 72():127-136. PubMed ID: 29496005
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic particle hyperthermia--a promising tumour therapy?
    Dutz S; Hergt R
    Nanotechnology; 2014 Nov; 25(45):452001. PubMed ID: 25337919
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia.
    Andreu I; Natividad E
    Int J Hyperthermia; 2013 Dec; 29(8):739-51. PubMed ID: 24001056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracellular hyperthermia: Nanobubbles and their biomedical applications.
    Wen D
    Int J Hyperthermia; 2009 Nov; 25(7):533-41. PubMed ID: 19848616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern.
    Salloum M; Ma R; Zhu L
    Int J Hyperthermia; 2009 Jun; 25(4):309-21. PubMed ID: 19670098
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetic Vortices as Efficient Nano Heaters in Magnetic Nanoparticle Hyperthermia.
    Usov NA; Nesmeyanov MS; Tarasov VP
    Sci Rep; 2018 Jan; 8(1):1224. PubMed ID: 29352175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnetic multicore nanoparticles for hyperthermia--influence of particle immobilization in tumour tissue on magnetic properties.
    Dutz S; Kettering M; Hilger I; Müller R; Zeisberger M
    Nanotechnology; 2011 Jul; 22(26):265102. PubMed ID: 21576784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Necrosis evolution during high-temperature hyperthermia through implanted heat sources.
    Badini P; De Cupis P; Gerosa G; Giona M
    IEEE Trans Biomed Eng; 2003 Mar; 50(3):305-15. PubMed ID: 12669987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinical applications of magnetic nanoparticles for hyperthermia.
    Thiesen B; Jordan A
    Int J Hyperthermia; 2008 Sep; 24(6):467-74. PubMed ID: 18608593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimizing magnetic nanoparticle design for nanothermotherapy.
    Gazeau F; Lévy M; Wilhelm C
    Nanomedicine (Lond); 2008 Dec; 3(6):831-44. PubMed ID: 19025457
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method.
    Golneshan AA; Lahonian M
    Int J Hyperthermia; 2011; 27(3):266-74. PubMed ID: 21501028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bifurcation and chaos in spin-valve pillars in a periodic applied magnetic field.
    Murugesh S; Lakshmanan M
    Chaos; 2009 Dec; 19(4):043111. PubMed ID: 20059207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arrangement at the nanoscale: Effect on magnetic particle hyperthermia.
    Myrovali E; Maniotis N; Makridis A; Terzopoulou A; Ntomprougkidis V; Simeonidis K; Sakellari D; Kalogirou O; Samaras T; Salikhov R; Spasova M; Farle M; Wiedwald U; Angelakeris M
    Sci Rep; 2016 Nov; 6():37934. PubMed ID: 27897195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solution to the bioheat equation for hyperthermia with La(1-x)Ag(y)MnO(3-delta) nanoparticles: the effect of temperature autostabilization.
    Atsarkin VA; Levkin LV; Posvyanskiy VS; Melnikov OV; Markelova MN; Gorbenko OY; Kaul AR
    Int J Hyperthermia; 2009 May; 25(3):240-7. PubMed ID: 19437239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In-plane magnetic anisotropy and temperature dependence of switching field in (Ga, Mn) as ferromagnetic semiconductors.
    Kamara S; Terki F; Dumas R; Dehbaoui M; Sadowski J; Galéra RM; Tran QH; Charar S
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4868-73. PubMed ID: 22905543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Construction of orthogonal synchronized bi-directional field to enhance heating efficiency of magnetic nanoparticles.
    Chen SW; Lai JJ; Chiang CL; Chen CL
    Rev Sci Instrum; 2012 Jun; 83(6):064701. PubMed ID: 22755645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages.
    Fantechi E; Innocenti C; Zanardelli M; Fittipaldi M; Falvo E; Carbo M; Shullani V; Di Cesare Mannelli L; Ghelardini C; Ferretti AM; Ponti A; Sangregorio C; Ceci P
    ACS Nano; 2014 May; 8(5):4705-19. PubMed ID: 24689973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.