BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23367959)

  • 1. Computer simulation of adsorption on nanoparticles: the case of attractive interactions.
    Pinto OA; López de Mishima BA; Leiva EP; Oviedo OA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061602. PubMed ID: 23367959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice-gas model of nonadditive interacting particles on nanotube bundles.
    Pinto OA; Pasinetti PM; Nieto F; Ramirez-Pastor AJ
    J Chem Phys; 2011 Feb; 134(6):064702. PubMed ID: 21322716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer simulation and detailed mean-field approximation applied to adsorption on nanoparticles.
    Pinto OA; López de Mishima B; Dávila M; Ramirez-Pastor AJ; Leiva EP; Oviedo OA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062407. PubMed ID: 24483461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. II. Adsorption of atomic and molecular fluids in a porous material.
    Desgranges C; Delhommelle J
    J Chem Phys; 2012 May; 136(18):184108. PubMed ID: 22583278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The adsorption of a mixture of particles with non-additive interactions: a Monte Carlo study.
    Pinto OA; Pasinetti PM; Ramirez-Pastor AJ; Nieto FD
    Phys Chem Chem Phys; 2015 Feb; 17(5):3050-8. PubMed ID: 25512955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grand canonical Monte Carlo simulation of the adsorption isotherms of water molecules on model soot particles.
    Moulin F; Picaud S; Hoang PN; Jedlovszky P
    J Chem Phys; 2007 Oct; 127(16):164719. PubMed ID: 17979383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grand canonical Monte Carlo simulation study of capillary condensation between nanoparticles.
    Kim S; Ehrman SH
    J Chem Phys; 2007 Oct; 127(13):134702. PubMed ID: 17919038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monomolecular adsorption on nanoparticles with repulsive interactions: a Monte Carlo study.
    Pinto OA; López de Mishima BA; Leiva EP; Oviedo OA
    Phys Chem Chem Phys; 2016 Jun; 18(21):14610-8. PubMed ID: 27181601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice-gas Monte Carlo study of adsorption in pores.
    Trasca RA; Calbi MM; Cole MW; Riccardo JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011605. PubMed ID: 14995631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab Initio Prediction of Adsorption Isotherms for Gas Mixtures by Grand Canonical Monte Carlo Simulations on a Lattice of Sites.
    Kundu A; Sillar K; Sauer J
    J Phys Chem Lett; 2017 Jun; 8(12):2713-2718. PubMed ID: 28586209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore size distribution analysis of selected hexagonal mesoporous silicas by grand canonical Monte Carlo simulations.
    Herdes C; Santos MA; Medina F; Vega LF
    Langmuir; 2005 Sep; 21(19):8733-42. PubMed ID: 16142955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption mechanism of carbon dioxide in faujasites: grand canonical monte carlo simulations and microcalorimetry measurements.
    Maurin G; Llewellyn PL; Bell RG
    J Phys Chem B; 2005 Aug; 109(33):16084-91. PubMed ID: 16853044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic characterization of fluids confined in heterogeneous pores by monte carlo simulations in the grand canonical and the isobaric-isothermal ensembles.
    Puibasset J
    J Phys Chem B; 2005 Apr; 109(16):8185-94. PubMed ID: 16851957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural surface and thermodynamics analysis of nanoparticles with defects.
    Gavilán-Arriazu EM; Giménez RE; Pinto OA
    Phys Chem Chem Phys; 2020 Oct; 22(40):23148-23157. PubMed ID: 33025983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of gas adsorption on a surface and in slit pores with grand canonical and canonical kinetic Monte Carlo methods.
    Ustinov EA; Do DD
    Phys Chem Chem Phys; 2012 Aug; 14(31):11112-8. PubMed ID: 22767023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water adsorption in disordered mesoporous silica (Vycor) at 300 K and 650 K: a Grand Canonical Monte Carlo simulation study of hysteresis.
    Puibasset J; Pellenq RJ
    J Chem Phys; 2005 Mar; 122(9):094704. PubMed ID: 15836159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular simulations of water and paracresol in MFI zeolite--a Monte Carlo study.
    Narasimhan L; Boulet P; Kuchta B; Schaef O; Denoyel R; Brunet P
    Langmuir; 2009 Oct; 25(19):11598-607. PubMed ID: 19711959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption thermodynamics of two-domain antifreeze proteins: theory and Monte Carlo simulations.
    Narambuena CF; Sanchez Varretti FO; Ramirez-Pastor AJ
    Phys Chem Chem Phys; 2016 Sep; 18(35):24549-59. PubMed ID: 27539563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grand canonical monte carlo simulation study of methane adsorption at an open graphite surface and in slit-like carbon pores at 273 K.
    Kowalczyk P; Tanaka H; Kaneko K; Terzyk AP; Do DD
    Langmuir; 2005 Jun; 21(12):5639-46. PubMed ID: 15924500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular simulation study of the stepped behaviors of gas adsorption in two-dimensional covalent organic frameworks.
    Yang Q; Zhong C
    Langmuir; 2009 Feb; 25(4):2302-8. PubMed ID: 19199723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.