These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 23367985)
41. Predicting the future of excitation energy transfer in light-harvesting complex with artificial intelligence-based quantum dynamics. Ullah A; Dral PO Nat Commun; 2022 Apr; 13(1):1930. PubMed ID: 35411054 [TBL] [Abstract][Full Text] [Related]
42. Multipartite entanglement in the Fenna-Matthews-Olson (FMO) pigment-protein complex. Thilagam A J Chem Phys; 2012 May; 136(17):175104. PubMed ID: 22583269 [TBL] [Abstract][Full Text] [Related]
43. Dynamics of light harvesting in photosynthesis. Cheng YC; Fleming GR Annu Rev Phys Chem; 2009; 60():241-62. PubMed ID: 18999996 [TBL] [Abstract][Full Text] [Related]
44. Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria. Huh J; Saikin SK; Brookes JC; Valleau S; Fujita T; Aspuru-Guzik A J Am Chem Soc; 2014 Feb; 136(5):2048-57. PubMed ID: 24405318 [TBL] [Abstract][Full Text] [Related]
45. Excitation transfer pathways in excitonic aggregates revealed by the stochastic Schrödinger equation. Abramavicius V; Abramavicius D J Chem Phys; 2014 Feb; 140(6):065103. PubMed ID: 24527939 [TBL] [Abstract][Full Text] [Related]
46. QM/MM modeling of environmental effects on electronic transitions of the FMO complex. Gao J; Shi WJ; Ye J; Wang X; Hirao H; Zhao Y J Phys Chem B; 2013 Apr; 117(13):3488-95. PubMed ID: 23480507 [TBL] [Abstract][Full Text] [Related]
47. Influence of site-dependent pigment-protein interactions on excitation energy transfer in photosynthetic light harvesting. Rivera E; Montemayor D; Masia M; Coker DF J Phys Chem B; 2013 May; 117(18):5510-21. PubMed ID: 23597258 [TBL] [Abstract][Full Text] [Related]
48. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Hildner R; Brinks D; Nieder JB; Cogdell RJ; van Hulst NF Science; 2013 Jun; 340(6139):1448-51. PubMed ID: 23788794 [TBL] [Abstract][Full Text] [Related]
49. Assistance of molecular vibrations on coherent energy transfer in photosynthesis from the view of a quantum heat engine. Zhang Z; Wang J J Phys Chem B; 2015 Apr; 119(13):4662-7. PubMed ID: 25776946 [TBL] [Abstract][Full Text] [Related]
50. Efficient estimation of energy transfer efficiency in light-harvesting complexes. Shabani A; Mohseni M; Rabitz H; Lloyd S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011915. PubMed ID: 23005460 [TBL] [Abstract][Full Text] [Related]
51. Testing quantum speedups in exciton transport through a photosynthetic complex using quantum stochastic walks. Dudhe N; Sahoo PK; Benjamin C Phys Chem Chem Phys; 2022 Jan; 24(4):2601-2613. PubMed ID: 35029248 [TBL] [Abstract][Full Text] [Related]
52. Photosynthetic Energy Transfer at the Quantum/Classical Border. Keren N; Paltiel Y Trends Plant Sci; 2018 Jun; 23(6):497-506. PubMed ID: 29625851 [TBL] [Abstract][Full Text] [Related]
53. Discrete cyclic porphyrin arrays as artificial light-harvesting antenna. Aratani N; Kim D; Osuka A Acc Chem Res; 2009 Dec; 42(12):1922-34. PubMed ID: 19842697 [TBL] [Abstract][Full Text] [Related]
54. Computational methodologies and physical insights into electronic energy transfer in photosynthetic light-harvesting complexes. Pachón LA; Brumer P Phys Chem Chem Phys; 2012 Aug; 14(29):10094-108. PubMed ID: 22735237 [TBL] [Abstract][Full Text] [Related]
55. On the accuracy of the LSC-IVR approach for excitation energy transfer in molecular aggregates. Teh HH; Cheng YC J Chem Phys; 2017 Apr; 146(14):144105. PubMed ID: 28411592 [TBL] [Abstract][Full Text] [Related]
56. Coherent Speedup of Excitation Energy Transfer in PC645. Singh D J Phys Chem B; 2021 Jan; 125(2):557-561. PubMed ID: 33416332 [TBL] [Abstract][Full Text] [Related]
57. Effect of Pulse Shaping on Observing Coherent Energy Transfer in Single Light-Harvesting Complexes. Song K; Bai S; Shi Q J Phys Chem B; 2016 Nov; 120(45):11637-11643. PubMed ID: 27749066 [TBL] [Abstract][Full Text] [Related]
58. Two-dimensional spectroscopy can distinguish between decoherence and dephasing of zero-quantum coherences. Fidler AF; Harel E; Long PD; Engel GS J Phys Chem A; 2012 Jan; 116(1):282-9. PubMed ID: 22191993 [TBL] [Abstract][Full Text] [Related]
59. Influence of Force Fields and Quantum Chemistry Approach on Spectral Densities of BChl a in Solution and in FMO Proteins. Chandrasekaran S; Aghtar M; Valleau S; Aspuru-Guzik A; Kleinekathöfer U J Phys Chem B; 2015 Aug; 119(31):9995-10004. PubMed ID: 26156758 [TBL] [Abstract][Full Text] [Related]
60. Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer. Higgins JS; Lloyd LT; Sohail SH; Allodi MA; Otto JP; Saer RG; Wood RE; Massey SC; Ting PC; Blankenship RE; Engel GS Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33688046 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]