These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
391 related articles for article (PubMed ID: 23368034)
1. Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows. Giesecke A; Stefani F; Burguete J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066303. PubMed ID: 23368034 [TBL] [Abstract][Full Text] [Related]
2. Role of soft-iron impellers on the mode selection in the von kármán-sodium dynamo experiment. Giesecke A; Stefani F; Gerbeth G Phys Rev Lett; 2010 Jan; 104(4):044503. PubMed ID: 20366717 [TBL] [Abstract][Full Text] [Related]
3. Mean-field model of the von Kármán sodium dynamo experiment using soft iron impellers. Nore C; Léorat J; Guermond JL; Giesecke A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013008. PubMed ID: 25679709 [TBL] [Abstract][Full Text] [Related]
4. Effect of soft-iron impellers on the von Kármán-sodium dynamo. Xu M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013012. PubMed ID: 24580325 [TBL] [Abstract][Full Text] [Related]
5. Impact of impellers on the axisymmetric magnetic mode in the VKS2 dynamo experiment. Laguerre R; Nore C; Ribeiro A; Léorat J; Guermond JL; Plunian F Phys Rev Lett; 2008 Sep; 101(10):104501. PubMed ID: 18851218 [TBL] [Abstract][Full Text] [Related]
6. Self-consistent simulations of a von Kármán type dynamo in a spherical domain with metallic walls. Guervilly C; Brummell NH Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046317. PubMed ID: 23214687 [TBL] [Abstract][Full Text] [Related]
7. Kinematic α tensors and dynamo mechanisms in a von Kármán swirling flow. Ravelet F; Dubrulle B; Daviaud F; Ratié PA Phys Rev Lett; 2012 Jul; 109(2):024503. PubMed ID: 23030166 [TBL] [Abstract][Full Text] [Related]
8. Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic-field generation in shear flows. Herault J; Rincon F; Cossu C; Lesur G; Ogilvie GI; Longaretti PY Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036321. PubMed ID: 22060506 [TBL] [Abstract][Full Text] [Related]
9. Role of boundary conditions in helicoidal flow collimation: Consequences for the von Kármán sodium dynamo experiment. Varela J; Brun S; Dubrulle B; Nore C Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063015. PubMed ID: 26764812 [TBL] [Abstract][Full Text] [Related]
10. Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent flow. Bayliss RA; Forest CB; Nornberg MD; Spence EJ; Terry PW Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026303. PubMed ID: 17358418 [TBL] [Abstract][Full Text] [Related]
11. Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows. Hamlin ND; Newman WI Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043101. PubMed ID: 23679524 [TBL] [Abstract][Full Text] [Related]
12. Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. Monchaux R; Berhanu M; Bourgoin M; Moulin M; Odier P; Pinton JF; Volk R; Fauve S; Mordant N; Pétrélis F; Chiffaudel A; Daviaud F; Dubrulle B; Gasquet C; Marié L; Ravelet F Phys Rev Lett; 2007 Jan; 98(4):044502. PubMed ID: 17358779 [TBL] [Abstract][Full Text] [Related]
13. Dynamo threshold detection in the von Kármán sodium experiment. Miralles S; Bonnefoy N; Bourgoin M; Odier P; Pinton JF; Plihon N; Verhille G; Boisson J; Daviaud F; Dubrulle B Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013002. PubMed ID: 23944544 [TBL] [Abstract][Full Text] [Related]
14. Role of large-scale velocity fluctuations in a two-vortex kinematic dynamo. Kaplan EJ; Brown BP; Rahbarnia K; Forest CB Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066315. PubMed ID: 23005214 [TBL] [Abstract][Full Text] [Related]
15. Detection of a flow induced magnetic field eigenmode in the riga dynamo facility. Gailitis A; Lielausis O; Dement'ev S; Platacis E; Cifersons A; Gerbeth G; Gundrum T; Stefani F; Christen M; Hanel H; Will G Phys Rev Lett; 2000 May; 84(19):4365-8. PubMed ID: 10990687 [TBL] [Abstract][Full Text] [Related]
16. Wave-driven dynamo action in spherical magnetohydrodynamic systems. Reuter K; Jenko F; Tilgner A; Forest CB Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056304. PubMed ID: 20365070 [TBL] [Abstract][Full Text] [Related]
17. Nonlinear Large Scale Flow in a Precessing Cylinder and Its Ability To Drive Dynamo Action. Giesecke A; Vogt T; Gundrum T; Stefani F Phys Rev Lett; 2018 Jan; 120(2):024502. PubMed ID: 29376714 [TBL] [Abstract][Full Text] [Related]
18. Dynamo efficiency controlled by hydrodynamic bistability. Miralles S; Herault J; Fauve S; Gissinger C; Pétrélis F; Daviaud F; Dubrulle B; Boisson J; Bourgoin M; Verhille G; Odier P; Pinton JF; Plihon N Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063023. PubMed ID: 25019895 [TBL] [Abstract][Full Text] [Related]
19. Effect of metallic walls on dynamos generated by laminar boundary-driven flow in a spherical domain. Guervilly C; Wood TS; Brummell NH Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053010. PubMed ID: 24329354 [TBL] [Abstract][Full Text] [Related]