These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 23368061)

  • 1. Exploding-wire experiments and theory for metal conductivity evaluation in the sub-eV regime.
    Stephens J; Neuber A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066409. PubMed ID: 23368061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiempirical wide-range conductivity model with exploding wire verification.
    Stephens J; Dickens J; Neuber A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053102. PubMed ID: 25353899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possibility of an unequivocal test of different models of the equation of state of aluminum in the coupling regime Gamma approximately 1-50.
    Perrot F; Dharma-wardana MW; Benage J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046414. PubMed ID: 12006030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-principles equation-of-state table of silicon and its effects on high-energy-density plasma simulations.
    Hu SX; Gao R; Ding Y; Collins LA; Kress JD
    Phys Rev E; 2017 Apr; 95(4-1):043210. PubMed ID: 28505720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum molecular dynamics study on the structures and dc conductivity of warm dense silane.
    Sun H; Kang D; Dai J; Zeng J; Yuan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022128. PubMed ID: 25353443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanosecond electrical explosion of thin aluminum wires in a vacuum: experimental and computational investigations.
    Sarkisov GS; Rosenthal SE; Cochrane KR; Struve KW; Deeney C; McDaniel DH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046404. PubMed ID: 15903791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab Initio simulations of dense helium plasmas.
    Wang C; He XT; Zhang P
    Phys Rev Lett; 2011 Apr; 106(14):145002. PubMed ID: 21561197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of magnetohydrodynamic simulations of Joule-heated conductors to the vaporization curve in equations of state.
    Kreher SE; Rousculp CL; Bauer BS; Hutchinson TM; Klemmer AW; Starrett CE; Yu EP
    Phys Rev E; 2024 Jun; 109(6-2):065202. PubMed ID: 39020971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradient Theory simulations of pure fluid interfaces using a generalized expression for influence parameters and a Helmholtz energy equation of state for fundamentally consistent two-phase calculations.
    Dahms RN
    J Colloid Interface Sci; 2015 May; 445():48-59. PubMed ID: 25596368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure and electrical resistivity measurements on hot expanded nickel: comparisons with quantum molecular dynamics simulations and average atom approaches.
    Clérouin J; Starrett C; Faussurier G; Blancard C; Noiret P; Renaudin P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046402. PubMed ID: 21230400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat-release equation of state and thermal conductivity of warm dense carbon by proton differential heating.
    Ping Y; Whitley HD; McKelvey A; Kemp GE; Sterne PA; Shepherd R; Marinak M; Hua R; Beg FN; Eggert JH
    Phys Rev E; 2019 Oct; 100(4-1):043204. PubMed ID: 31771018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equations of state and transport properties of warm dense beryllium: a quantum molecular dynamics study.
    Wang C; Long Y; Tian MF; He XT; Zhang P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043105. PubMed ID: 23679528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal conductivity measurements of proton-heated warm dense aluminum.
    McKelvey A; Kemp GE; Sterne PA; Fernandez-Panella A; Shepherd R; Marinak M; Link A; Collins GW; Sio H; King J; Freeman RR; Hua R; McGuffey C; Kim J; Beg FN; Ping Y
    Sci Rep; 2017 Aug; 7(1):7015. PubMed ID: 28765571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A platform for exploding wires in different media.
    Han R; Wu J; Qiu A; Zhou H; Wang Y; Yan J; Ding W
    Rev Sci Instrum; 2017 Oct; 88(10):103504. PubMed ID: 29092495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strongly coupled copper plasma generated by underwater electrical wire explosion.
    Grinenko A; Gurovich VT; Saypin A; Efimov S; Krasik YE; Oreshkin VI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066401. PubMed ID: 16486064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origins of the high temperature increase of the thermal conductivity of transition metal carbides from atomistic simulations.
    Crocombette JP
    J Phys Condens Matter; 2013 Dec; 25(50):505501. PubMed ID: 24275525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling asymmetric cavity collapse with plasma equations of state.
    Tully B; Hawker N; Ventikos Y
    Phys Rev E; 2016 May; 93(5):053105. PubMed ID: 27300976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced hopping conductivity in low band gap donor-acceptor molecular wires Up to 20 nm in length.
    Choi SH; Frisbie CD
    J Am Chem Soc; 2010 Nov; 132(45):16191-201. PubMed ID: 20973532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining the electrical conductivity of metals using the 2 MA Thor pulsed power driver.
    Porwitzky A; Cochrane KR; Stoltzfus B
    Rev Sci Instrum; 2021 May; 92(5):053551. PubMed ID: 34243338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.