These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23368085)

  • 1. Early regimes of capillary filling.
    Das S; Waghmare PR; Mitra SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):067301. PubMed ID: 23368085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different regimes in vertical capillary filling.
    Das S; Mitra SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063005. PubMed ID: 23848770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coalescence-Induced Self-Propulsion of Droplets on Superomniphobic Surfaces.
    Vahabi H; Wang W; Davies S; Mabry JM; Kota AK
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29328-29336. PubMed ID: 28771317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early regimes of water capillary flow in slit silica nanochannels.
    Oyarzua E; Walther JH; Mejía A; Zambrano HA
    Phys Chem Chem Phys; 2015 Jun; 17(22):14731-9. PubMed ID: 25976034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary Filling at the Microscale: Control of Fluid Front Using Geometry.
    Trejo-Soto C; Costa-Miracle E; Rodriguez-Villarreal I; Cid J; Alarcón T; Hernández-Machado A
    PLoS One; 2016; 11(4):e0153559. PubMed ID: 27104734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary filling with giant liquid/solid slip: dynamics of water uptake by carbon nanotubes.
    Joly L
    J Chem Phys; 2011 Dec; 135(21):214705. PubMed ID: 22149809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filling of charged cylindrical capillaries.
    Das S; Chanda S; Eijkel JC; Tas NR; Chakraborty S; Mitra SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043011. PubMed ID: 25375597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse problem of capillary filling.
    Elizalde E; Urteaga R; Koropecki RR; Berli CL
    Phys Rev Lett; 2014 Apr; 112(13):134502. PubMed ID: 24745427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periodic emission of droplets from an oscillating electrified meniscus of a low-viscosity, highly conductive liquid.
    Hijano AJ; Loscertales IG; Ibáñez SE; Higuera FJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013011. PubMed ID: 25679712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of capillary element aspect ratio on the dynamic imbibition within porous networks.
    Ridgway CJ; Gane PA; Schoelkopf J
    J Colloid Interface Sci; 2002 Aug; 252(2):373-82. PubMed ID: 16290802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary filling dynamics of viscoelastic fluids.
    Bandopadhyay A; Ghosh U; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053024. PubMed ID: 25353897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental contribution to the understanding of the dynamics of spreading of Newtonian fluids: effect of volume, viscosity and surfactant.
    Roques-Carmes T; Mathieu V; Gigante A
    J Colloid Interface Sci; 2010 Apr; 344(1):180-97. PubMed ID: 20089256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plethora of transitions during breakup of liquid filaments.
    Castrejón-Pita JR; Castrejón-Pita AA; Thete SS; Sambath K; Hutchings IM; Hinch J; Lister JR; Basaran OA
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4582-7. PubMed ID: 25825761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vesicles under simple shear flow: elucidating the role of relevant control parameters.
    Kaoui B; Farutin A; Misbah C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061905. PubMed ID: 20365188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emulsification in turbulent flow 1. Mean and maximum drop diameters in inertial and viscous regimes.
    Vankova N; Tcholakova S; Denkov ND; Ivanov IB; Vulchev VD; Danner T
    J Colloid Interface Sci; 2007 Aug; 312(2):363-80. PubMed ID: 17462665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary Pumping Independent of Liquid Sample Viscosity.
    Guo W; Hansson J; van der Wijngaart W
    Langmuir; 2016 Dec; 32(48):12650-12655. PubMed ID: 27798835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified Lucas-Washburn theory for fluid filling in nanotubes.
    Heiranian M; Aluru NR
    Phys Rev E; 2022 May; 105(5-2):055105. PubMed ID: 35706303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electro-capillary effects in capillary filling dynamics of electrorheological fluids.
    Dhar J; Ghosh U; Chakraborty S
    Soft Matter; 2015 Sep; 11(35):6957-67. PubMed ID: 26235842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drop coalescence and liquid flow in a single Plateau border.
    Cohen A; Fraysse N; Raufaste C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053008. PubMed ID: 26066250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capillary filling under electro-osmotic effects in the presence of electromagneto-hydrodynamic effects.
    Desai N; Ghosh U; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063017. PubMed ID: 25019889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.