These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23368252)

  • 1. Many-body effects in iron pnictides and chalcogenides: nonlocal versus dynamic origin of effective masses.
    Tomczak JM; van Schilfgaarde M; Kotliar G
    Phys Rev Lett; 2012 Dec; 109(23):237010. PubMed ID: 23368252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasiparticle self-consistent GW method for the spectral properties of complex materials.
    Bruneval F; Gatti M
    Top Curr Chem; 2014; 347():99-135. PubMed ID: 24563009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies.
    Bruneval F
    J Chem Phys; 2012 May; 136(19):194107. PubMed ID: 22612080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides.
    Yin ZP; Haule K; Kotliar G
    Nat Mater; 2011 Sep; 10(12):932-5. PubMed ID: 21927004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral properties of correlated materials: local vertex and nonlocal two-particle correlations from combined GW and dynamical mean field theory.
    Ayral T; Werner P; Biermann S
    Phys Rev Lett; 2012 Nov; 109(22):226401. PubMed ID: 23368137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zn-VI quasiparticle gaps and optical spectra from many-body calculations.
    Riefer A; Weber N; Mund J; Yakovlev DR; Bayer M; Schindlmayr A; Meier C; Schmidt WG
    J Phys Condens Matter; 2017 Jun; 29(21):215702. PubMed ID: 28374685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superconductivity and magnetism in 11-structure iron chalcogenides in relation to the iron pnictides.
    Singh DJ
    Sci Technol Adv Mater; 2012 Oct; 13(5):054304. PubMed ID: 27877517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective 3-body interaction for mean-field and density-functional theory.
    Gezerlis A; Bertsch GF
    Phys Rev Lett; 2010 Nov; 105(21):212501. PubMed ID: 21231293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaussian-based quasiparticle self-consistent GW for periodic systems.
    Lei J; Zhu T
    J Chem Phys; 2022 Dec; 157(21):214114. PubMed ID: 36511534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasiparticle Self-Consistent
    Förster A; Visscher L
    J Chem Theory Comput; 2022 Nov; 18(11):6779-6793. PubMed ID: 36201788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasiparticle self-consistent GW method: a short summary.
    Kotani T; Schilfgaarde Mv; Faleev SV; Chantis A
    J Phys Condens Matter; 2007 Sep; 19(36):365236. PubMed ID: 21694181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmark of GW Approaches for the GW100 Test Set.
    Caruso F; Dauth M; van Setten MJ; Rinke P
    J Chem Theory Comput; 2016 Oct; 12(10):5076-5087. PubMed ID: 27631585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermi surface topology of LaFePO and LiFeP.
    Ferber J; Jeschke HO; Valentí R
    Phys Rev Lett; 2012 Dec; 109(23):236403. PubMed ID: 23368230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Justifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory.
    Ismail-Beigi S
    J Phys Condens Matter; 2017 Sep; 29(38):385501. PubMed ID: 28593935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Re-examination of half-metallic ferromagnetism for doped LaMnO(3) in a quasiparticle self-consistent GW method.
    Kotani T; Kino H
    J Phys Condens Matter; 2009 Jul; 21(26):266002. PubMed ID: 21828480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Many-body approximation scheme beyond GW.
    Sun P; Kotliar G
    Phys Rev Lett; 2004 May; 92(19):196402. PubMed ID: 15169424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing GW Approaches for Predicting Core Level Binding Energies.
    van Setten MJ; Costa R; Viñes F; Illas F
    J Chem Theory Comput; 2018 Feb; 14(2):877-883. PubMed ID: 29320628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasiparticle Self-Consistent
    Friedrich C; Blügel S; Nabok D
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functionals from many-body perturbation theory: the band gap for semiconductors and insulators.
    Grüning M; Marini A; Rubio A
    J Chem Phys; 2006 Apr; 124(15):154108. PubMed ID: 16674219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation-induced self-doping in the iron-pnictide superconductor Ba2Ti2Fe2As4O.
    Ma JZ; van Roekeghem A; Richard P; Liu ZH; Miao H; Zeng LK; Xu N; Shi M; Cao C; He JB; Chen GF; Sun YL; Cao GH; Wang SC; Biermann S; Qian T; Ding H
    Phys Rev Lett; 2014 Dec; 113(26):266407. PubMed ID: 25615365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.