These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 23368565)

  • 1. Nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon.
    van Zwol PJ; Thiele S; Berger C; de Heer WA; Chevrier J
    Phys Rev Lett; 2012 Dec; 109(26):264301. PubMed ID: 23368565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles.
    Francoeur M; Basu S; Petersen SJ
    Opt Express; 2011 Sep; 19(20):18774-88. PubMed ID: 21996819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-field thermal radiation between graphene-covered doped silicon plates.
    Lim M; Lee SS; Lee BJ
    Opt Express; 2013 Sep; 21(19):22173-85. PubMed ID: 24104109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene.
    Xu XG; Jiang JH; Gilburd L; Rensing RG; Burch KS; Zhi C; Bando Y; Golberg D; Walker GC
    ACS Nano; 2014 Nov; 8(11):11305-12. PubMed ID: 25365544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials.
    Nikitin AY; Alonso-González P; Hillenbrand R
    Nano Lett; 2014 May; 14(5):2896-901. PubMed ID: 24773123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal transport into graphene through nanoscopic contacts.
    Menges F; Riel H; Stemmer A; Dimitrakopoulos C; Gotsmann B
    Phys Rev Lett; 2013 Nov; 111(20):205901. PubMed ID: 24289696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled One-Dimensional Plasmons and Two-Dimensional Phonon Polaritons in Hybrid Silver Nanowire/Silicon Carbide Structures.
    Joshi T; Kang JH; Jiang L; Wang S; Tarigo T; Lyu T; Kahn S; Shi Z; Shen YR; Crommie MF; Wang F
    Nano Lett; 2017 Jun; 17(6):3662-3667. PubMed ID: 28460175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate-induced bandgap opening in epitaxial graphene.
    Zhou SY; Gweon GH; Fedorov AV; First PN; de Heer WA; Lee DH; Guinea F; Castro Neto AH; Lanzara A
    Nat Mater; 2007 Oct; 6(10):770-5. PubMed ID: 17828279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of near-field radiative heat transfer using polar dielectric thin films.
    Song B; Ganjeh Y; Sadat S; Thompson D; Fiorino A; Fernández-Hurtado V; Feist J; Garcia-Vidal FJ; Cuevas JC; Reddy P; Meyhofer E
    Nat Nanotechnol; 2015 Mar; 10(3):253-8. PubMed ID: 25705866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic Plasmon-Phonon Interactions in Highly Doped Graphene: A Near-Field Imaging Study.
    Bezares FJ; Sanctis A; Saavedra JRM; Woessner A; Alonso-González P; Amenabar I; Chen J; Bointon TH; Dai S; Fogler MM; Basov DN; Hillenbrand R; Craciun MF; García de Abajo FJ; Russo S; Koppens FHL
    Nano Lett; 2017 Oct; 17(10):5908-5913. PubMed ID: 28809573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocurrent in graphene harnessed by tunable intrinsic plasmons.
    Freitag M; Low T; Zhu W; Yan H; Xia F; Avouris P
    Nat Commun; 2013; 4():1951. PubMed ID: 23727714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Friction force on slow charges moving over supported graphene.
    Allison KF; Misković ZL
    Nanotechnology; 2010 Apr; 21(13):134017. PubMed ID: 20208100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active Radiative Thermal Switching with Graphene Plasmon Resonators.
    Ilic O; Thomas NH; Christensen T; Sherrott MC; Soljačić M; Minnich AJ; Miller OD; Atwater HA
    ACS Nano; 2018 Mar; 12(3):2474-2481. PubMed ID: 29529374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiative heat transfer in the extreme near field.
    Kim K; Song B; Fernández-Hurtado V; Lee W; Jeong W; Cui L; Thompson D; Feist J; Reid MT; García-Vidal FJ; Cuevas JC; Meyhofer E; Reddy P
    Nature; 2015 Dec; 528(7582):387-91. PubMed ID: 26641312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene Plasmon Cavities Made with Silicon Carbide.
    Li K; Fitzgerald JM; Xiao X; Caldwell JD; Zhang C; Maier SA; Li X; Giannini V
    ACS Omega; 2017 Jul; 2(7):3640-3646. PubMed ID: 31457678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust Phonon-Plasmon Coupling in Quasifreestanding Graphene on Silicon Carbide.
    Koch RJ; Fryska S; Ostler M; Endlich M; Speck F; Hänsel T; Schaefer JA; Seyller T
    Phys Rev Lett; 2016 Mar; 116(10):106802. PubMed ID: 27015502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Goos-Hänchen Shift and Even-Odd Peak Oscillations in Edge-Reflections of Surface Polaritons in Atomically Thin Crystals.
    Kang JH; Wang S; Shi Z; Zhao W; Yablonovitch E; Wang F
    Nano Lett; 2017 Mar; 17(3):1768-1774. PubMed ID: 28165748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ab-initio coupled mode theory for near field radiative thermal transfer.
    Chalabi H; Hasman E; Brongersma ML
    Opt Express; 2014 Dec; 22(24):30032-46. PubMed ID: 25606933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unusual Otto excitation dynamics and enhanced coupling of light to TE plasmons in graphene.
    Mason DR; Menabde SG; Park N
    Opt Express; 2014 Jan; 22(1):847-58. PubMed ID: 24515044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized Colossal Near-Field Thermal Radiation Enabled by Manipulating Coupled Plasmon Polariton Geometry.
    Shi K; Chen Z; Xu X; Evans J; He S
    Adv Mater; 2021 Dec; 33(52):e2106097. PubMed ID: 34632648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.