BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23368584)

  • 1. Suppression of grain boundaries in graphene growth on superstructured Mn-Cu(111) surface.
    Chen W; Chen H; Lan H; Cui P; Schulze TP; Zhu W; Zhang Z
    Phys Rev Lett; 2012 Dec; 109(26):265507. PubMed ID: 23368584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical vapor deposition of graphene single crystals.
    Yan Z; Peng Z; Tour JM
    Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of graphene grain boundaries on Cu(100) surface and a route towards their elimination in chemical vapor deposition growth.
    Yuan Q; Song G; Sun D; Ding F
    Sci Rep; 2014 Oct; 4():6541. PubMed ID: 25286970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Governing Rule for Dynamic Formation of Grain Boundaries in Grown Graphene.
    Guo W; Wu B; Li Y; Wang L; Chen J; Chen B; Zhang Z; Peng L; Wang S; Liu Y
    ACS Nano; 2015 Jun; 9(6):5792-8. PubMed ID: 25988831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Communication: Stable carbon nanoarches in the initial stages of epitaxial growth of graphene on Cu(111).
    Van Wesep RG; Chen H; Zhu W; Zhang Z
    J Chem Phys; 2011 May; 134(17):171105. PubMed ID: 21548665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of chemical vapor deposition of graphene and related applications.
    Zhang Y; Zhang L; Zhou C
    Acc Chem Res; 2013 Oct; 46(10):2329-39. PubMed ID: 23480816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotated domains in chemical vapor deposition-grown monolayer graphene on Cu(111): an angle-resolved photoemission study.
    Jeon C; Hwang HN; Lee WG; Jung YG; Kim KS; Park CY; Hwang CC
    Nanoscale; 2013 Sep; 5(17):8210-4. PubMed ID: 23863869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Kinetic Pathway toward High-Density Ordered N Doping of Epitaxial Graphene on Cu(111) Using C
    Cui P; Choi JH; Zeng C; Li Z; Yang J; Zhang Z
    J Am Chem Soc; 2017 May; 139(21):7196-7202. PubMed ID: 28497683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth intermediates for CVD graphene on Cu(111): carbon clusters and defective graphene.
    Niu T; Zhou M; Zhang J; Feng Y; Chen W
    J Am Chem Soc; 2013 Jun; 135(22):8409-14. PubMed ID: 23675983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slip-Line-Guided Growth of Graphene.
    Li Y; Liu H; Chang Z; Li H; Wang S; Lin L; Peng H; Wei Y; Sun L; Liu Z
    Adv Mater; 2022 Jul; 34(28):e2201188. PubMed ID: 35511471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly uniform growth of monolayer graphene by chemical vapor deposition on Cu-Ag alloy catalysts.
    Shin HA; Ryu J; Cho SP; Lee EK; Cho S; Lee C; Joo YC; Hong BH
    Phys Chem Chem Phys; 2014 Feb; 16(7):3087-94. PubMed ID: 24399098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nickel carbide as a source of grain rotation in epitaxial graphene.
    Jacobson P; Stöger B; Garhofer A; Parkinson GS; Schmid M; Caudillo R; Mittendorfer F; Redinger J; Diebold U
    ACS Nano; 2012 Apr; 6(4):3564-72. PubMed ID: 22414295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic-scale evidence for potential barriers and strong carrier scattering at graphene grain boundaries: a scanning tunneling microscopy study.
    Koepke JC; Wood JD; Estrada D; Ong ZY; He KT; Pop E; Lyding JW
    ACS Nano; 2013 Jan; 7(1):75-86. PubMed ID: 23237026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly and continuous growth of hexagonal graphene flakes on liquid Cu.
    Cho SY; Kim MS; Kim M; Kim KJ; Kim HM; Lee DJ; Lee SH; Kim KB
    Nanoscale; 2015 Aug; 7(30):12820-7. PubMed ID: 26172584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Edge-Catalyst Wetting and Orientation Control of Graphene Growth by Chemical Vapor Deposition Growth.
    Yuan Q; Yakobson BI; Ding F
    J Phys Chem Lett; 2014 Sep; 5(18):3093-9. PubMed ID: 26276318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation energy paths for graphene nucleation and growth on Cu.
    Kim H; Mattevi C; Calvo MR; Oberg JC; Artiglia L; Agnoli S; Hirjibehedin CF; Chhowalla M; Saiz E
    ACS Nano; 2012 Apr; 6(4):3614-23. PubMed ID: 22443380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How graphene crosses a grain boundary on the catalyst surface during chemical vapour deposition growth.
    Dong J; Zhang L; Zhang K; Ding F
    Nanoscale; 2018 Apr; 10(15):6878-6883. PubMed ID: 29633768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cooling condition on chemical vapor deposition synthesis of graphene on copper catalyst.
    Choi DS; Kim KS; Kim H; Kim Y; Kim T; Rhy SH; Yang CM; Yoon DH; Yang WS
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19574-8. PubMed ID: 25386721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation-Dependent Strain Relaxation and Chemical Functionalization of Graphene on a Cu(111) Foil.
    Li BW; Luo D; Zhu L; Zhang X; Jin S; Huang M; Ding F; Ruoff RS
    Adv Mater; 2018 Mar; 30(10):. PubMed ID: 29337385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of Twinned Graphene Polycrystals.
    Dong J; Geng D; Liu F; Ding F
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7723-7727. PubMed ID: 30968518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.