These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mean-field model for nematic alignment of self-propelled rods. Perepelitsa M; Timofeyev I; Murphy P; Igoshin OA Phys Rev E; 2022 Sep; 106(3-1):034613. PubMed ID: 36266908 [TBL] [Abstract][Full Text] [Related]
3. Enhanced diffusion and ordering of self-propelled rods. Baskaran A; Marchetti MC Phys Rev Lett; 2008 Dec; 101(26):268101. PubMed ID: 19113789 [TBL] [Abstract][Full Text] [Related]
4. Comparison between Smoluchowski and Boltzmann approaches for self-propelled rods. Bertin E; Baskaran A; Chaté H; Marchetti MC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042141. PubMed ID: 26565202 [TBL] [Abstract][Full Text] [Related]
5. Large-scale collective properties of self-propelled rods. Ginelli F; Peruani F; Bär M; Chaté H Phys Rev Lett; 2010 May; 104(18):184502. PubMed ID: 20482178 [TBL] [Abstract][Full Text] [Related]
6. Collective behavior of penetrable self-propelled rods in two dimensions. Abkenar M; Marx K; Auth T; Gompper G Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062314. PubMed ID: 24483451 [TBL] [Abstract][Full Text] [Related]
7. Continuous theory of active matter systems with metric-free interactions. Peshkov A; Ngo S; Bertin E; Chaté H; Ginelli F Phys Rev Lett; 2012 Aug; 109(9):098101. PubMed ID: 23002888 [TBL] [Abstract][Full Text] [Related]
8. Tricritical points in a Vicsek model of self-propelled particles with bounded confidence. Romensky M; Lobaskin V; Ihle T Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063315. PubMed ID: 25615230 [TBL] [Abstract][Full Text] [Related]
9. Collective motion of binary self-propelled particle mixtures. Menzel AM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021912. PubMed ID: 22463249 [TBL] [Abstract][Full Text] [Related]
10. Breakdown of Boltzmann-type models for the alignment of self-propelled rods. Murphy P; Perepelitsa M; Timofeyev I; Lieber-Kotz M; Islas B; Igoshin OA Math Biosci; 2024 Oct; 376():109266. PubMed ID: 39127094 [TBL] [Abstract][Full Text] [Related]
11. Phase separation of self-propelled disks with ferromagnetic and nematic alignment. Sesé-Sansa E; Levis D; Pagonabarraga I Phys Rev E; 2021 Nov; 104(5-1):054611. PubMed ID: 34942723 [TBL] [Abstract][Full Text] [Related]
12. Poisson bracket approach to the dynamics of nematic liquid crystals: the role of spin angular momentum. Stark H; Lubensky TC Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051714. PubMed ID: 16383627 [TBL] [Abstract][Full Text] [Related]
13. Hydrodynamics of self-propelled hard rods. Baskaran A; Marchetti MC Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011920. PubMed ID: 18351889 [TBL] [Abstract][Full Text] [Related]
17. Understanding collective dynamics of soft active colloids by binary scattering. Hanke T; Weber CA; Frey E Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052309. PubMed ID: 24329266 [TBL] [Abstract][Full Text] [Related]
18. Poisson-bracket approach to the dynamics of nematic liquid crystals. Stark H; Lubensky TC Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061709. PubMed ID: 16241246 [TBL] [Abstract][Full Text] [Related]
19. Macroscopic model of self-propelled bacteria swarming with regular reversals. Gejji R; Lushnikov PM; Alber M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021903. PubMed ID: 22463240 [TBL] [Abstract][Full Text] [Related]
20. Calculation of the microscopic and macroscopic linear and nonlinear optical properties of liquid acetonitrile. II. Local fields and linear and nonlinear susceptibilities in quadrupolar approximation. Avramopoulos A; Papadopoulos MG; Reis H J Phys Chem B; 2007 Mar; 111(10):2546-53. PubMed ID: 17311448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]