These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23368835)

  • 1. Prediction of disulfide connectivity in proteins with machine-learning methods and correlated mutations.
    Savojardo C; Fariselli P; Martelli PL; Casadio R
    BMC Bioinformatics; 2013; 14 Suppl 1(Suppl 1):S10. PubMed ID: 23368835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the prediction of disulfide bonds in Eukaryotes with machine learning methods and protein subcellular localization.
    Savojardo C; Fariselli P; Alhamdoosh M; Martelli PL; Pierleoni A; Casadio R
    Bioinformatics; 2011 Aug; 27(16):2224-30. PubMed ID: 21715467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting disulfide bond connectivity in proteins by correlated mutations analysis.
    Rubinstein R; Fiser A
    Bioinformatics; 2008 Feb; 24(4):498-504. PubMed ID: 18203772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure.
    Song J; Yuan Z; Tan H; Huber T; Burrage K
    Bioinformatics; 2007 Dec; 23(23):3147-54. PubMed ID: 17942444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disulfide connectivity prediction using recursive neural networks and evolutionary information.
    Vullo A; Frasconi P
    Bioinformatics; 2004 Mar; 20(5):653-9. PubMed ID: 15033872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustering-based model of cysteine co-evolution improves disulfide bond connectivity prediction and reduces homologous sequence requirements.
    Raimondi D; Orlando G; Vranken WF
    Bioinformatics; 2015 Apr; 31(8):1219-25. PubMed ID: 25492406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cysteine separations profiles on protein sequences infer disulfide connectivity.
    Zhao E; Liu HL; Tsai CH; Tsai HK; Chan CH; Kao CY
    Bioinformatics; 2005 Apr; 21(8):1415-20. PubMed ID: 15585533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. diSBPred: A machine learning based approach for disulfide bond prediction.
    Mishra A; Kabir MWU; Hoque MT
    Comput Biol Chem; 2021 Apr; 91():107436. PubMed ID: 33550156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting disulfide connectivity patterns.
    Lu CH; Chen YC; Yu CS; Hwang JK
    Proteins; 2007 May; 67(2):262-70. PubMed ID: 17285623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the relevance of sophisticated structural annotations for disulfide connectivity pattern prediction.
    Becker J; Maes F; Wehenkel L
    PLoS One; 2013; 8(2):e56621. PubMed ID: 23533562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Evolutionary View on Disulfide Bond Connectivities Prediction Using Phylogenetic Trees and a Simple Cysteine Mutation Model.
    Raimondi D; Orlando G; Vranken WF
    PLoS One; 2015; 10(7):e0131792. PubMed ID: 26161671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simplified approach to disulfide connectivity prediction from protein sequences.
    Vincent M; Passerini A; Labbé M; Frasconi P
    BMC Bioinformatics; 2008 Jan; 9():20. PubMed ID: 18194539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of disulfide connectivity from protein sequences.
    Chen YC; Hwang JK
    Proteins; 2005 Nov; 61(3):507-12. PubMed ID: 16170781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate disulfide-bonding network predictions improve ab initio structure prediction of cysteine-rich proteins.
    Yang J; He BJ; Jang R; Zhang Y; Shen HB
    Bioinformatics; 2015 Dec; 31(23):3773-81. PubMed ID: 26254435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the accuracy of predicting disulfide connectivity by feature selection.
    Zhu L; Yang J; Song JN; Chou KC; Shen HB
    J Comput Chem; 2010 May; 31(7):1478-85. PubMed ID: 20127740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disulfide connectivity prediction using secondary structure information and diresidue frequencies.
    Ferrè F; Clote P
    Bioinformatics; 2005 May; 21(10):2336-46. PubMed ID: 15741247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of the disulfide-bonding state of cysteine in proteins.
    Muskal SM; Holbrook SR; Kim SH
    Protein Eng; 1990 Aug; 3(8):667-72. PubMed ID: 2217140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of the disulphide bridges in proteins using SVM.
    Du A; Hu X; Pan Y
    Int J Bioinform Res Appl; 2007; 3(2):223-33. PubMed ID: 18048190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dinosolve: a protein disulfide bonding prediction server using context-based features to enhance prediction accuracy.
    Yaseen A; Li Y
    BMC Bioinformatics; 2013; 14 Suppl 13(Suppl 13):S9. PubMed ID: 24267383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinformatics approaches for disulfide connectivity prediction.
    Tsai CH; Chan CH; Chen BJ; Kao CY; Liu HL; Hsu JP
    Curr Protein Pept Sci; 2007 Jun; 8(3):243-60. PubMed ID: 17584119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.