These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 23369045)
1. Use of digital gene expression to discriminate gene expression differences in early generations of resynthesized Brassica napus and its diploid progenitors. Jiang J; Shao Y; Du K; Ran L; Fang X; Wang Y BMC Genomics; 2013 Feb; 14():72. PubMed ID: 23369045 [TBL] [Abstract][Full Text] [Related]
2. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids. Jiang J; Wang Y; Zhu B; Fang T; Fang Y; Wang Y BMC Plant Biol; 2015 Jan; 15():22. PubMed ID: 25623840 [TBL] [Abstract][Full Text] [Related]
3. Use of mRNA-seq to discriminate contributions to the transcriptome from the constituent genomes of the polyploid crop species Brassica napus. Higgins J; Magusin A; Trick M; Fraser F; Bancroft I BMC Genomics; 2012 Jun; 13():247. PubMed ID: 22703051 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide identification and analysis of the WUSCHEL-related homeobox (WOX) gene family in allotetraploid Brassica napus reveals changes in WOX genes during polyploidization. Li M; Wang R; Liu Z; Wu X; Wang J BMC Genomics; 2019 Apr; 20(1):317. PubMed ID: 31023229 [TBL] [Abstract][Full Text] [Related]
5. Homoeolog expression bias and expression level dominance (ELD) in four tissues of natural allotetraploid Brassica napus. Li M; Wang R; Wu X; Wang J BMC Genomics; 2020 Apr; 21(1):330. PubMed ID: 32349676 [TBL] [Abstract][Full Text] [Related]
6. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Rana D; van den Boogaart T; O'Neill CM; Hynes L; Bent E; Macpherson L; Park JY; Lim YP; Bancroft I Plant J; 2004 Dec; 40(5):725-33. PubMed ID: 15546355 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide identification and analysis of the EIN3/EIL gene family in allotetraploid Brassica napus reveal its potential advantages during polyploidization. Li M; Wang R; Liang Z; Wu X; Wang J BMC Plant Biol; 2019 Mar; 19(1):110. PubMed ID: 30898097 [TBL] [Abstract][Full Text] [Related]
8. Homoeolog expression bias and expression level dominance in resynthesized allopolyploid Brassica napus. Wu J; Lin L; Xu M; Chen P; Liu D; Sun Q; Ran L; Wang Y BMC Genomics; 2018 Aug; 19(1):586. PubMed ID: 30081834 [TBL] [Abstract][Full Text] [Related]
9. Subgenome-dominant expression and alternative splicing in response to Sclerotinia infection in polyploid Brassica napus and progenitors. de Jong GW; Adams KL Plant J; 2023 Apr; 114(1):142-158. PubMed ID: 36710652 [TBL] [Abstract][Full Text] [Related]
11. Genome-Wide Identification and Characterization of the Sun W; Li M; Wang J Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054810 [No Abstract] [Full Text] [Related]
12. Genetic factors inherited from both diploid parents interact to affect genome stability and fertility in resynthesized allotetraploid Brassica napus. Katche EI; Schierholt A; Schiessl SV; He F; Lv Z; Batley J; Becker HC; Mason AS G3 (Bethesda); 2023 Aug; 13(8):. PubMed ID: 37313757 [TBL] [Abstract][Full Text] [Related]
13. Retention of triplicated phytoene synthase (PSY) genes in Brassica napus L. and its diploid progenitors during the evolution of the Brassiceae. Cárdenas PD; Gajardo HA; Huebert T; Parkin IA; Iniguez-Luy FL; Federico ML Theor Appl Genet; 2012 May; 124(7):1215-28. PubMed ID: 22241480 [TBL] [Abstract][Full Text] [Related]
14. A newly-developed community microarray resource for transcriptome profiling in Brassica species enables the confirmation of Brassica-specific expressed sequences. Trick M; Cheung F; Drou N; Fraser F; Lobenhofer EK; Hurban P; Magusin A; Town CD; Bancroft I BMC Plant Biol; 2009 May; 9():50. PubMed ID: 19426481 [TBL] [Abstract][Full Text] [Related]
15. Differential regulation of gene products in newly synthesized Brassica napus allotetraploids is not related to protein function nor subcellular localization. Albertin W; Alix K; Balliau T; Brabant P; Davanture M; Malosse C; Valot B; Thiellement H BMC Genomics; 2007 Feb; 8():56. PubMed ID: 17313678 [TBL] [Abstract][Full Text] [Related]
16. Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids. Xu Y; Zhong L; Wu X; Fang X; Wang J Planta; 2009 Feb; 229(3):471-83. PubMed ID: 18998158 [TBL] [Abstract][Full Text] [Related]
17. A global survey of the transcriptome of allopolyploid Brassica napus based on single-molecule long-read isoform sequencing and Illumina-based RNA sequencing data. Yao S; Liang F; Gill RA; Huang J; Cheng X; Liu Y; Tong C; Liu S Plant J; 2020 Jul; 103(2):843-857. PubMed ID: 32270540 [TBL] [Abstract][Full Text] [Related]
18. Comparative analysis of the genetic variability within the Q-type C2H2 zinc-finger transcription factors in the economically important cabbage, canola and Chinese cabbage genomes. Lawrence SD; Novak NG Hereditas; 2018; 155():29. PubMed ID: 30258345 [TBL] [Abstract][Full Text] [Related]
19. The impacts of allopolyploidization on Methyl-CpG-Binding Domain (MBD) gene family in Brassica napus. Xiao Y; Li M; Wang J BMC Plant Biol; 2022 Mar; 22(1):103. PubMed ID: 35255818 [TBL] [Abstract][Full Text] [Related]
20. Comparative analysis of basic helix-loop-helix gene family among Brassica oleracea, Brassica rapa, and Brassica napus. Miao L; Gao Y; Zhao K; Kong L; Yu S; Li R; Liu K; Yu X BMC Genomics; 2020 Feb; 21(1):178. PubMed ID: 32093614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]