These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23369184)

  • 21. The enhancer binding protein Nla6 regulates developmental genes that are important for Myxococcus xanthus sporulation.
    Giglio KM; Zhu C; Klunder C; Kummer S; Garza AG
    J Bacteriol; 2015 Apr; 197(7):1276-87. PubMed ID: 25645554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus.
    Ueki T; Inouye S
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8782-7. PubMed ID: 12851461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual regulation with Ser/Thr kinase cascade and a His/Asp TCS in Myxococcus xanthus.
    Inouye S; Nariya H
    Adv Exp Med Biol; 2008; 631():111-21. PubMed ID: 18792684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combinatorial regulation of the dev operon by MrpC2 and FruA during Myxococcus xanthus development.
    Campbell A; Viswanathan P; Barrett T; Son B; Saha S; Kroos L
    J Bacteriol; 2015 Jan; 197(2):240-51. PubMed ID: 25349159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MazF-induced growth inhibition and persister generation in Escherichia coli.
    Tripathi A; Dewan PC; Siddique SA; Varadarajan R
    J Biol Chem; 2014 Feb; 289(7):4191-205. PubMed ID: 24375411
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combinatorial regulation by MrpC2 and FruA involves three sites in the fmgE promoter region during Myxococcus xanthus development.
    Son B; Liu Y; Kroos L
    J Bacteriol; 2011 Jun; 193(11):2756-66. PubMed ID: 21441502
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Orphan MbtH-Like Protein Interacts with Multiple Nonribosomal Peptide Synthetases in Myxococcus xanthus DK1622.
    Esquilín-Lebrón KJ; Boynton TO; Shimkets LJ; Thomas MG
    J Bacteriol; 2018 Nov; 200(21):. PubMed ID: 30126939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNA Futile Cycling in Model Persisters Derived from MazF Accumulation.
    Mok WW; Park JO; Rabinowitz JD; Brynildsen MP
    mBio; 2015 Nov; 6(6):e01588-15. PubMed ID: 26578677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli.
    Zhang Y; Zhang J; Hoeflich KP; Ikura M; Qing G; Inouye M
    Mol Cell; 2003 Oct; 12(4):913-23. PubMed ID: 14580342
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MazF-mediated cell death in Escherichia coli: a point of no return.
    Amitai S; Yassin Y; Engelberg-Kulka H
    J Bacteriol; 2004 Dec; 186(24):8295-300. PubMed ID: 15576778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quorum Sensing Extracellular Death Peptides Enhance the Endoribonucleolytic Activities of
    Nigam A; Kumar S; Engelberg-Kulka H
    mBio; 2018 May; 9(3):. PubMed ID: 29717013
    [No Abstract]   [Full Text] [Related]  

  • 32. Overexpression of MazFsa in Staphylococcus aureus induces bacteriostasis by selectively targeting mRNAs for cleavage.
    Fu Z; Tamber S; Memmi G; Donegan NP; Cheung AL
    J Bacteriol; 2009 Apr; 191(7):2051-9. PubMed ID: 19168622
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acquisition of HIV-1 resistance in T lymphocytes using an ACA-specific E. coli mRNA interferase.
    Chono H; Matsumoto K; Tsuda H; Saito N; Lee K; Kim S; Shibata H; Ageyama N; Terao K; Yasutomi Y; Mineno J; Kim S; Inouye M; Kato I
    Hum Gene Ther; 2011 Jan; 22(1):35-43. PubMed ID: 20649483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The MazF-regulon: a toolbox for the post-transcriptional stress response in Escherichia coli.
    Sauert M; Wolfinger MT; Vesper O; Müller C; Byrgazov K; Moll I
    Nucleic Acids Res; 2016 Aug; 44(14):6660-75. PubMed ID: 26908653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Global analysis of phase variation in Myxococcus xanthus.
    Furusawa G; Dziewanowska K; Stone H; Settles M; Hartzell P
    Mol Microbiol; 2011 Aug; 81(3):784-804. PubMed ID: 21722202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stress-Induced MazF-Mediated Proteins in Escherichia coli.
    Nigam A; Ziv T; Oron-Gottesman A; Engelberg-Kulka H
    mBio; 2019 Mar; 10(2):. PubMed ID: 30914510
    [No Abstract]   [Full Text] [Related]  

  • 37. mRNA Interferase
    Kang SM; Koo JS; Kim CM; Kim DH; Lee BJ
    Toxins (Basel); 2020 Jun; 12(6):. PubMed ID: 32521689
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of dual substrate binding sites in the homodimeric structure of Escherichia coli mRNA interferase MazF.
    Li GY; Zhang Y; Chan MC; Mal TK; Hoeflich KP; Inouye M; Ikura M
    J Mol Biol; 2006 Mar; 357(1):139-50. PubMed ID: 16413577
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An ADP-ribosyltransferase Alt of bacteriophage T4 negatively regulates the Escherichia coli MazF toxin of a toxin-antitoxin module.
    Alawneh AM; Qi D; Yonesaki T; Otsuka Y
    Mol Microbiol; 2016 Jan; 99(1):188-98. PubMed ID: 26395283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic studies of mrp, a locus essential for cellular aggregation and sporulation of Myxococcus xanthus.
    Sun H; Shi W
    J Bacteriol; 2001 Aug; 183(16):4786-95. PubMed ID: 11466282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.