These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23369184)

  • 61. Clostridium difficile MazF toxin exhibits selective, not global, mRNA cleavage.
    Rothenbacher FP; Suzuki M; Hurley JM; Montville TJ; Kirn TJ; Ouyang M; Woychik NA
    J Bacteriol; 2012 Jul; 194(13):3464-74. PubMed ID: 22544268
    [TBL] [Abstract][Full Text] [Related]  

  • 62. MrpC, a CRP/Fnr homolog, functions as a negative autoregulator during the Myxococcus xanthus multicellular developmental program.
    McLaughlin M; Bhardwaj V; Feeley BE; Higgs PI
    Mol Microbiol; 2018 Jul; 109(2):245-261. PubMed ID: 29745442
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Analyses of mrp genes during Myxococcus xanthus development.
    Sun H; Shi W
    J Bacteriol; 2001 Dec; 183(23):6733-9. PubMed ID: 11698359
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Characterization of 3'-Phosphate RNA Ligase Paralogs RtcB1, RtcB2, and RtcB3 from Myxococcus xanthus Highlights DNA and RNA 5'-Phosphate Capping Activity of RtcB3.
    Maughan WP; Shuman S
    J Bacteriol; 2015 Nov; 197(22):3616-24. PubMed ID: 26350128
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Bacillus subtilis MazF-bs (EndoA) is a UACAU-specific mRNA interferase.
    Park JH; Yamaguchi Y; Inouye M
    FEBS Lett; 2011 Aug; 585(15):2526-32. PubMed ID: 21763692
    [TBL] [Abstract][Full Text] [Related]  

  • 66. SigB, SigC, and SigE from Myxococcus xanthus homologous to sigma32 are not required for heat shock response but for multicellular differentiation.
    Ueki T; Inouye S
    J Mol Microbiol Biotechnol; 2001 Apr; 3(2):287-93. PubMed ID: 11321585
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Identification of enhancer binding proteins important for Myxococcus xanthus development.
    Giglio KM; Eisenstatt J; Garza AG
    J Bacteriol; 2010 Jan; 192(1):360-4. PubMed ID: 19897655
    [TBL] [Abstract][Full Text] [Related]  

  • 68. mazEF: a chromosomal toxin-antitoxin module that triggers programmed cell death in bacteria.
    Engelberg-Kulka H; Hazan R; Amitai S
    J Cell Sci; 2005 Oct; 118(Pt 19):4327-32. PubMed ID: 16179604
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway.
    Erental A; Sharon I; Engelberg-Kulka H
    PLoS Biol; 2012; 10(3):e1001281. PubMed ID: 22412352
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Genome Editing in Model Strain
    Yang YJ; Singh RP; Lan X; Zhang CS; Li YZ; Li YQ; Sheng DH
    Biomolecules; 2018 Nov; 8(4):. PubMed ID: 30404219
    [No Abstract]   [Full Text] [Related]  

  • 71. EspA, an orphan hybrid histidine protein kinase, regulates the timing of expression of key developmental proteins of Myxococcus xanthus.
    Higgs PI; Jagadeesan S; Mann P; Zusman DR
    J Bacteriol; 2008 Jul; 190(13):4416-26. PubMed ID: 18390653
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The mRNA interferases, MazF-mt3 and MazF-mt7 from Mycobacterium tuberculosis target unique pentad sequences in single-stranded RNA.
    Zhu L; Phadtare S; Nariya H; Ouyang M; Husson RN; Inouye M
    Mol Microbiol; 2008 Aug; 69(3):559-69. PubMed ID: 18485066
    [TBL] [Abstract][Full Text] [Related]  

  • 73. devI is an evolutionarily young negative regulator of Myxococcus xanthus development.
    Rajagopalan R; Wielgoss S; Lippert G; Velicer GJ; Kroos L
    J Bacteriol; 2015 Apr; 197(7):1249-62. PubMed ID: 25645563
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Systematic analysis of the Myxococcus xanthus developmental gene regulatory network supports posttranslational regulation of FruA by C-signaling.
    Saha S; Patra P; Igoshin O; Kroos L
    Mol Microbiol; 2019 Jun; 111(6):1732-1752. PubMed ID: 30895656
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fatty Acid Oxidation Is Required for Myxococcus xanthus Development.
    Bullock HA; Shen H; Boynton TO; Shimkets LJ
    J Bacteriol; 2018 May; 200(10):. PubMed ID: 29507089
    [No Abstract]   [Full Text] [Related]  

  • 76. Identification and characterization of a putative arginine kinase homolog from Myxococcus xanthus required for fruiting body formation and cell differentiation.
    Bragg J; Rajkovic A; Anderson C; Curtis R; Van Houten J; Begres B; Naples C; Snider M; Fraga D; Singer M
    J Bacteriol; 2012 May; 194(10):2668-76. PubMed ID: 22389486
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Myxococcus xanthus viability depends on groEL supplied by either of two genes, but the paralogs have different functions during heat shock, predation, and development.
    Li J; Wang Y; Zhang CY; Zhang WY; Jiang DM; Wu ZH; Liu H; Li YZ
    J Bacteriol; 2010 Apr; 192(7):1875-81. PubMed ID: 20139189
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Development of mazF-based markerless genome editing system and metabolic pathway engineering in Candida tropicalis for producing long-chain dicarboxylic acids.
    Wang J; Peng J; Fan H; Xiu X; Xue L; Wang L; Su J; Yang X; Wang R
    J Ind Microbiol Biotechnol; 2018 Nov; 45(11):971-981. PubMed ID: 30187242
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Evidence that a chaperone-usher-like pathway of Myxococcus xanthus functions in spore coat formation.
    Leng X; Zhu W; Jin J; Mao X
    Microbiology (Reading); 2011 Jul; 157(Pt 7):1886-1896. PubMed ID: 21454366
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Disruption of aldA influences the developmental process in Myxococcus xanthus.
    Ward MJ; Lew H; Zusman DR
    J Bacteriol; 2000 Jan; 182(2):546-50. PubMed ID: 10629210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.