BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23369580)

  • 1. Influence of oxygen on NADH recycling and oxidative stress resistance systems in Lactobacillus panis PM1.
    Kang TS; Korber DR; Tanaka T
    AMB Express; 2013 Jan; 3(1):10. PubMed ID: 23369580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of citrate in redox potential maintenance and ATP production: metabolic pathways and their regulation in Lactobacillus panis PM1.
    Kang TS; Korber DR; Tanaka T
    Appl Microbiol Biotechnol; 2013 Oct; 97(19):8693-703. PubMed ID: 23912115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of novel 1,3-propanediol-producing Lactobacillus panis PM1 from bioethanol thin stillage.
    Khan NH; Kang TS; Grahame DA; Haakensen MC; Ratanapariyanuch K; Reaney MJ; Korber DR; Tanaka T
    Appl Microbiol Biotechnol; 2013 Jan; 97(1):417-28. PubMed ID: 23076589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of a glycerol-oxidative pathway in Lactobacillus panis PM1 for utilization of bioethanol thin stillage: potential to produce platform chemicals from glycerol.
    Kang TS; Korber DR; Tanaka T
    Appl Environ Microbiol; 2014 Dec; 80(24):7631-9. PubMed ID: 25281374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycerol and environmental factors: effects on 1,3-propanediol production and NAD(+) regeneration in Lactobacillus panis PM1.
    Kang TS; Korber DR; Tanaka T
    J Appl Microbiol; 2013 Oct; 115(4):1003-11. PubMed ID: 23795775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkaline conditions stimulate the production of 1,3-propanediol in Lactobacillus panis PM1 through shifting metabolic pathways.
    Grahame DA; Kang TS; Khan NH; Tanaka T
    World J Microbiol Biotechnol; 2013 Jul; 29(7):1207-15. PubMed ID: 23400350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of dual glycolytic pathways for fructose metabolism in heterofermentative Lactobacillus panis PM1.
    Kang TS; Korber DR; Tanaka T
    Appl Environ Microbiol; 2013 Dec; 79(24):7818-26. PubMed ID: 24096428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional repressor role of PocR on the 1,3-propanediol biosynthetic pathway by Lactobacillus panis PM1.
    Kang TS; Korber DR; Tanaka T
    Biotechnol Lett; 2014 Jun; 36(6):1263-9. PubMed ID: 24563308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADH peroxidase plays a crucial role in consuming H
    Naraki S; Igimi S; Sasaki Y
    Biosci Microbiota Food Health; 2020; 39(2):45-56. PubMed ID: 32328400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased production of hydrogen peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon aeration: involvement of an NADH oxidase in oxidative stress.
    Marty-Teysset C; de la Torre F; Garel J
    Appl Environ Microbiol; 2000 Jan; 66(1):262-7. PubMed ID: 10618234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of Lactobacillus plantarum lactate metabolism side effects in relation to the modulation of aeration parameters.
    Quatravaux S; Remize F; Bryckaert E; Colavizza D; Guzzo J
    J Appl Microbiol; 2006 Oct; 101(4):903-12. PubMed ID: 16968302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of oxygen utilization and hydrogen peroxide accumulation with oxygen induced enzymes in Lactobacillus plantarum cultures.
    Murphy MG; Condon S
    Arch Microbiol; 1984 May; 138(1):44-8. PubMed ID: 6742956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of a Water-Forming NADH Oxidase Improves the Metabolism and Stress Tolerance of Saccharomyces cerevisiae in Aerobic Fermentation.
    Shi X; Zou Y; Chen Y; Zheng C; Ying H
    Front Microbiol; 2016; 7():1427. PubMed ID: 27679617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free radical detoxification in Giardia duodenalis.
    Brown DM; Upcroft JA; Upcroft P
    Mol Biochem Parasitol; 1995 Jun; 72(1-2):47-56. PubMed ID: 8538699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hydrogen peroxide-forming NADH oxidase that functions as an alkyl hydroperoxide reductase in Amphibacillus xylanus.
    Niimura Y; Nishiyama Y; Saito D; Tsuji H; Hidaka M; Miyaji T; Watanabe T; Massey V
    J Bacteriol; 2000 Sep; 182(18):5046-51. PubMed ID: 10960086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive response of Amphibacillus xylanus to normal aerobic and forced oxidative stress conditions.
    Mochizuki D; Arai T; Asano M; Sasakura N; Watanabe T; Shiwa Y; Nakamura S; Katano Y; Fujinami S; Fujita N; Abe A; Sato J; Nakagawa J; Niimura Y
    Microbiology (Reading); 2014 Feb; 160(Pt 2):340-352. PubMed ID: 24307665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A water-forming NADH oxidase regulates metabolism in anaerobic fermentation.
    Shi XC; Zou YN; Chen Y; Zheng C; Li BB; Xu JH; Shen XN; Ying HJ
    Biotechnol Biofuels; 2016; 9():103. PubMed ID: 27175216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactic acid fermentation is the main aerobic metabolic pathway in Enterococcus faecalis metabolizing a high concentration of glycerol.
    Doi Y
    Appl Microbiol Biotechnol; 2018 Dec; 102(23):10183-10192. PubMed ID: 30232536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on NADH oxidase and alkyl hydroperoxide reductase produced by Porphyromonas gingivalis.
    Diaz PI; Zilm PS; Wasinger V; Corthals GL; Rogers AH
    Oral Microbiol Immunol; 2004 Jun; 19(3):137-43. PubMed ID: 15107063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic and biochemical responses of probiotic bacteria to oxygen.
    Talwalkar A; Kailasapathy K
    J Dairy Sci; 2003 Aug; 86(8):2537-46. PubMed ID: 12939077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.