BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23370308)

  • 1. Cancer antigen 125 detection using the plasmon resonance scattering properties of gold nanorods.
    Zhang K; Shen X
    Analyst; 2013 Mar; 138(6):1828-34. PubMed ID: 23370308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational aspect ratio and suitable antibody coverage of gold nanorod for ultra-sensitive detection of a cancer biomarker.
    Truong PL; Kim BW; Sim SJ
    Lab Chip; 2012 Mar; 12(6):1102-9. PubMed ID: 22298159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods.
    Huang H; Tang C; Zeng Y; Yu X; Liao B; Xia X; Yi P; Chu PK
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):96-101. PubMed ID: 19211228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attomolar detection of protein biomarkers using biofunctionalized gold nanorods with surface plasmon resonance.
    Sim HR; Wark AW; Lee HJ
    Analyst; 2010 Oct; 135(10):2528-32. PubMed ID: 20725693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-sensitivity biosensors fabricated by tailoring the localized surface plasmon resonance property of core-shell gold nanorods.
    Huang H; Huang S; Yuan S; Qu C; Chen Y; Xu Z; Liao B; Zeng Y; Chu PK
    Anal Chim Acta; 2011 Jan; 683(2):242-7. PubMed ID: 21167977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods.
    Law WC; Yong KT; Baev A; Hu R; Prasad PN
    Opt Express; 2009 Oct; 17(21):19041-6. PubMed ID: 20372639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplification of localized surface plasmon resonance signals by a gold nanorod assembly and ultra-sensitive detection of mercury.
    Huang H; Qu C; Liu X; Huang S; Xu Z; Zhu Y; Chu PK
    Chem Commun (Camb); 2011 Jun; 47(24):6897-9. PubMed ID: 21603718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic detection of a model analyte in serum by a gold nanorod sensor.
    Marinakos SM; Chen S; Chilkoti A
    Anal Chem; 2007 Jul; 79(14):5278-83. PubMed ID: 17567106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of DNA based on localized surface plasmon resonance.
    Bi N; Sun Y; Zhang H; Song D; Wang L; Wang J; Tian Y
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):249-54. PubMed ID: 20667435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensing capability of the localized surface plasmon resonance of gold nanorods.
    Chen CD; Cheng SF; Chau LK; Wang CR
    Biosens Bioelectron; 2007 Jan; 22(6):926-32. PubMed ID: 16697633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive immunosensor for tumor necrosis factor α based on dual signal amplification of ferrocene modified self-assembled peptide nanowire and glucose oxidase functionalized gold nanorod.
    Sun Z; Deng L; Gan H; Shen R; Yang M; Zhang Y
    Biosens Bioelectron; 2013 Jan; 39(1):215-9. PubMed ID: 22884000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio.
    Fang Y; Chang WS; Willingham B; Swanglap P; Dominguez-Medina S; Link S
    ACS Nano; 2012 Aug; 6(8):7177-84. PubMed ID: 22830934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual sandwich immunoassay system on the basis of plasmon resonance scattering signals of silver nanoparticles.
    Ling J; Li YF; Huang CZ
    Anal Chem; 2009 Feb; 81(4):1707-14. PubMed ID: 19173573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods.
    Mayer KM; Lee S; Liao H; Rostro BC; Fuentes A; Scully PT; Nehl CL; Hafner JH
    ACS Nano; 2008 Apr; 2(4):687-92. PubMed ID: 19206599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of surface plasmon resonance and capacitive immunosensors for cancer antigen 125 detection in human serum samples.
    Suwansa-ard S; Kanatharana P; Asawatreratanakul P; Wongkittisuksa B; Limsakul C; Thavarungkul P
    Biosens Bioelectron; 2009 Aug; 24(12):3436-41. PubMed ID: 19553100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High sensitivity and selectivity of human antibody attachment at the interstices between substrate-bound gold nanoparticles.
    Hsu CY; Huang JW; Lin KJ
    Chem Commun (Camb); 2011 Jan; 47(3):872-4. PubMed ID: 21103465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent stokes scattering from gold nanorods: critical dimensions and multicolor near-resonant plasmon excitation.
    Kim H; Herzing A; Michaels CA; Bryant GW; Stranick SJ
    Nanoscale; 2011 Oct; 3(10):4290-5. PubMed ID: 21912802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new method for non-labeling attomolar detection of diseases based on an individual gold nanorod immunosensor.
    Truong PL; Cao C; Park S; Kim M; Sim SJ
    Lab Chip; 2011 Aug; 11(15):2591-7. PubMed ID: 21670836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization-dependent scanning photoionization microscopy: ultrafast plasmon-mediated electron ejection dynamics in single Au nanorods.
    Schweikhard V; Grubisic A; Baker TA; Thomann I; Nesbitt DJ
    ACS Nano; 2011 May; 5(5):3724-35. PubMed ID: 21466166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and optical properties of worm-like gold nanorods.
    Huang H; He C; Zeng Y; Xia X; Yu X; Yi P; Chen Z
    J Colloid Interface Sci; 2008 Jun; 322(1):136-42. PubMed ID: 18400232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.