These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23370311)

  • 1. Sub-meninges implantation reduces immune response to neural implants.
    Markwardt NT; Stokol J; Rennaker RL
    J Neurosci Methods; 2013 Apr; 214(2):119-25. PubMed ID: 23370311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays.
    He W; McConnell GC; Bellamkonda RV
    J Neural Eng; 2006 Dec; 3(4):316-26. PubMed ID: 17124336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro model of glial scarring around neuroelectrodes chronically implanted in the CNS.
    Polikov VS; Block ML; Fellous JM; Hong JS; Reichert WM
    Biomaterials; 2006 Nov; 27(31):5368-76. PubMed ID: 16842846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the in vivo glial response to miniaturized parylene cortical probes coated with an ultra-fast degrading polymer to aid insertion.
    Lo MC; Wang S; Singh S; Damodaran VB; Ahmed I; Coffey K; Barker D; Saste K; Kals K; Kaplan HM; Kohn J; Shreiber DI; Zahn JD
    J Neural Eng; 2018 Jun; 15(3):036002. PubMed ID: 29485103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preventing neuronal damage and inflammation in vivo during cortical microelectrode implantation through the use of poloxamer P-188.
    Misra A; Kondaveeti P; Nissanov J; Barbee K; Shewokis P; Rioux L; Moxon KA
    J Neural Eng; 2013 Feb; 10(1):016011. PubMed ID: 23337321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thin microelectrodes reduce GFAP expression in the implant site in rodent somatosensory cortex.
    Stice P; Gilletti A; Panitch A; Muthuswamy J
    J Neural Eng; 2007 Jun; 4(2):42-53. PubMed ID: 17409479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term gliosis around chronically implanted platinum electrodes in the Rhesus macaque motor cortex.
    Griffith RW; Humphrey DR
    Neurosci Lett; 2006 Oct; 406(1-2):81-6. PubMed ID: 16905255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple implants do not aggravate the tissue reaction in rat brain.
    Lind G; Gällentoft L; Danielsen N; Schouenborg J; Pettersson LM
    PLoS One; 2012; 7(10):e47509. PubMed ID: 23091629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering strategies towards overcoming bleeding and glial scar formation around neural probes.
    Otte E; Vlachos A; Asplund M
    Cell Tissue Res; 2022 Mar; 387(3):461-477. PubMed ID: 35029757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of scarring in peripheral nerve implants by drug elution.
    FitzGerald JJ
    J Neural Eng; 2016 Apr; 13(2):026006. PubMed ID: 26824180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host response to microgel coatings on neural electrodes implanted in the brain.
    Gutowski SM; Templeman KL; South AB; Gaulding JC; Shoemaker JT; LaPlaca MC; Bellamkonda RV; Lyon LA; García AJ
    J Biomed Mater Res A; 2014 May; 102(5):1486-99. PubMed ID: 23666919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices.
    Schendel AA; Thongpang S; Brodnick SK; Richner TJ; Lindevig BD; Krugner-Higby L; Williams JC
    J Neurosci Methods; 2013 Aug; 218(1):121-30. PubMed ID: 23769960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation.
    Savya SP; Li F; Lam S; Wellman SM; Stieger KC; Chen K; Eles JR; Kozai TDY
    Biomaterials; 2022 Oct; 289():121784. PubMed ID: 36103781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants.
    Prasad A; Xue QS; Sankar V; Nishida T; Shaw G; Streit WJ; Sanchez JC
    J Neural Eng; 2012 Oct; 9(5):056015. PubMed ID: 23010756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord.
    Ersen A; Elkabes S; Freedman DS; Sahin M
    J Neural Eng; 2015 Feb; 12(1):016019. PubMed ID: 25605679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of gliosis around moveable implants in the brain.
    Stice P; Muthuswamy J
    J Neural Eng; 2009 Aug; 6(4):046004. PubMed ID: 19556680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resveratrol protects neurons from cannulae implantation injury: implications for deep brain stimulation.
    Constant JP; Fraley GS; Forbes E; Hallas BH; Leheste JR; Torres G
    Neuroscience; 2012 Oct; 222():333-42. PubMed ID: 22796077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo spatiotemporal dynamics of NG2 glia activity caused by neural electrode implantation.
    Wellman SM; Kozai TDY
    Biomaterials; 2018 May; 164():121-133. PubMed ID: 29501892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic intracortical microelectrode arrays induce non-uniform, depth-related tissue responses.
    Woolley AJ; Desai HA; Otto KJ
    J Neural Eng; 2013 Apr; 10(2):026007. PubMed ID: 23428842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.