These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates. Malaga KA; Schroeder KE; Patel PR; Irwin ZT; Thompson DE; Nicole Bentley J; Lempka SF; Chestek CA; Patil PG J Neural Eng; 2016 Feb; 13(1):016010. PubMed ID: 26655972 [TBL] [Abstract][Full Text] [Related]
23. A comparison of insertion methods for surgical placement of penetrating neural interfaces. Thielen B; Meng E J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33845469 [TBL] [Abstract][Full Text] [Related]
24. Enhanced biocompatibility of neural probes by integrating microstructures and delivering anti-inflammatory agents via microfluidic channels. Liu B; Kim E; Meggo A; Gandhi S; Luo H; Kallakuri S; Xu Y; Zhang J J Neural Eng; 2017 Apr; 14(2):026008. PubMed ID: 28155844 [TBL] [Abstract][Full Text] [Related]
25. On the longevity of flexible neural interfaces: Establishing biostability of polyimide-based intracortical implants. Vomero M; Ciarpella F; Zucchini E; Kirsch M; Fadiga L; Stieglitz T; Asplund M Biomaterials; 2022 Feb; 281():121372. PubMed ID: 35066285 [TBL] [Abstract][Full Text] [Related]
26. Short-Term Effects of Gamma Stimulation on Neuroinflammation at the Tissue-Electrode Interface in Motor Cortex. Boltcreed E; Ersöz A; Han M; McConnell GC Neuromodulation; 2024 Apr; 27(3):500-508. PubMed ID: 38099883 [TBL] [Abstract][Full Text] [Related]
27. Meningeal Lymphangiogenesis and Enhanced Glymphatic Activity in Mice with Chronically Implanted EEG Electrodes. Hauglund NL; Kusk P; Kornum BR; Nedergaard M J Neurosci; 2020 Mar; 40(11):2371-2380. PubMed ID: 32047056 [TBL] [Abstract][Full Text] [Related]
28. A technique to prevent dural adhesions to chronically implanted microelectrode arrays. Maynard EM; Fernandez E; Normann RA J Neurosci Methods; 2000 Apr; 97(2):93-101. PubMed ID: 10788663 [TBL] [Abstract][Full Text] [Related]
29. Meningeal inflammatory response and fibrous tissue remodeling around intracortical implants: An in vivo two-photon imaging study. Eles JR; Vazquez AL; Kozai TDY; Cui XT Biomaterials; 2019 Mar; 195():111-123. PubMed ID: 30634095 [TBL] [Abstract][Full Text] [Related]
30. Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy. Eles JR; Vazquez AL; Snyder NR; Lagenaur C; Murphy MC; Kozai TD; Cui XT Biomaterials; 2017 Jan; 113():279-292. PubMed ID: 27837661 [TBL] [Abstract][Full Text] [Related]
31. Fabrication of polymer neural probes with sub-cellular features for reduced tissue encapsulation. Seymour JP; Kipke DR Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4606-9. PubMed ID: 17947102 [TBL] [Abstract][Full Text] [Related]
32. Inhibition of Na Dubaniewicz M; Eles JR; Lam S; Song S; Cambi F; Sun D; Wellman SM; Kozai TDY J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33621208 [No Abstract] [Full Text] [Related]
33. Influence of probe flexibility and gelatin embedding on neuronal density and glial responses to brain implants. Köhler P; Wolff A; Ejserholm F; Wallman L; Schouenborg J; Linsmeier CE PLoS One; 2015; 10(3):e0119340. PubMed ID: 25790172 [TBL] [Abstract][Full Text] [Related]
35. Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex. McCreery D; Cogan S; Kane S; Pikov V J Neural Eng; 2016 Jun; 13(3):036012. PubMed ID: 27108712 [TBL] [Abstract][Full Text] [Related]
36. Lower layers in the motor cortex are more effective targets for penetrating microelectrodes in cortical prostheses. Parikh H; Marzullo TC; Kipke DR J Neural Eng; 2009 Apr; 6(2):026004. PubMed ID: 19255460 [TBL] [Abstract][Full Text] [Related]
37. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Magliozzi R; Howell OW; Reeves C; Roncaroli F; Nicholas R; Serafini B; Aloisi F; Reynolds R Ann Neurol; 2010 Oct; 68(4):477-93. PubMed ID: 20976767 [TBL] [Abstract][Full Text] [Related]
38. Peptide modification of polyimide-insulated microwires: Towards improved biocompatibility through reduced glial scarring. Sridar S; Churchward MA; Mushahwar VK; Todd KG; Elias AL Acta Biomater; 2017 Sep; 60():154-166. PubMed ID: 28735029 [TBL] [Abstract][Full Text] [Related]
39. An ex vivo method for evaluating the biocompatibility of neural electrodes in rat brain slice cultures. Koeneman BA; Lee KK; Singh A; He J; Raupp GB; Panitch A; Capco DG J Neurosci Methods; 2004 Aug; 137(2):257-63. PubMed ID: 15262069 [TBL] [Abstract][Full Text] [Related]
40. The neural tissue around SU-8 implants: A quantitative in vivo biocompatibility study. Márton G; Tóth EZ; Wittner L; Fiáth R; Pinke D; Orbán G; Meszéna D; Pál I; Győri EL; Bereczki Z; Kandrács Á; Hofer KT; Pongrácz A; Ulbert I; Tóth K Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110870. PubMed ID: 32409039 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]