BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23370386)

  • 1. A new BET on the control of HIV latency.
    Karn J
    Cell Cycle; 2013 Feb; 12(4):545-6. PubMed ID: 23370386
    [No Abstract]   [Full Text] [Related]  

  • 2. BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism.
    Boehm D; Calvanese V; Dar RD; Xing S; Schroeder S; Martins L; Aull K; Li PC; Planelles V; Bradner JE; Zhou MM; Siliciano RF; Weinberger L; Verdin E; Ott M
    Cell Cycle; 2013 Feb; 12(3):452-62. PubMed ID: 23255218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. P-TEFb as a target to reactivate latent HIV: two Brds are now in hand.
    Rice AP
    Cell Cycle; 2013 Feb; 12(3):392-3. PubMed ID: 23324342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation.
    Li Z; Guo J; Wu Y; Zhou Q
    Nucleic Acids Res; 2013 Jan; 41(1):277-87. PubMed ID: 23087374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HIV latency reversing agents act through Tat post translational modifications.
    Khoury G; Mota TM; Li S; Tumpach C; Lee MY; Jacobson J; Harty L; Anderson JL; Lewin SR; Purcell DFJ
    Retrovirology; 2018 May; 15(1):36. PubMed ID: 29751762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The KAT5-Acetyl-Histone4-Brd4 axis silences HIV-1 transcription and promotes viral latency.
    Li Z; Mbonye U; Feng Z; Wang X; Gao X; Karn J; Zhou Q
    PLoS Pathog; 2018 Apr; 14(4):e1007012. PubMed ID: 29684085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BET-Inhibitors Disrupt Rad21-Dependent Conformational Control of KSHV Latency.
    Chen HS; De Leo A; Wang Z; Kerekovic A; Hills R; Lieberman PM
    PLoS Pathog; 2017 Jan; 13(1):e1006100. PubMed ID: 28107481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of CDK9 at Ser175 enhances HIV transcription and is a marker of activated P-TEFb in CD4(+) T lymphocytes.
    Mbonye UR; Gokulrangan G; Datt M; Dobrowolski C; Cooper M; Chance MR; Karn J
    PLoS Pathog; 2013; 9(5):e1003338. PubMed ID: 23658523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivation of latent HIV-1 by inhibition of BRD4.
    Zhu J; Gaiha GD; John SP; Pertel T; Chin CR; Gao G; Qu H; Walker BD; Elledge SJ; Brass AL
    Cell Rep; 2012 Oct; 2(4):807-16. PubMed ID: 23041316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclin-dependent kinase 7 (CDK7)-mediated phosphorylation of the CDK9 activation loop promotes P-TEFb assembly with Tat and proviral HIV reactivation.
    Mbonye U; Wang B; Gokulrangan G; Shi W; Yang S; Karn J
    J Biol Chem; 2018 Jun; 293(26):10009-10025. PubMed ID: 29743242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation.
    Ping YH; Rana TM
    J Biol Chem; 2001 Apr; 276(16):12951-8. PubMed ID: 11112772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tat, Tat-associated kinase, and transcription.
    Jeang KT
    J Biomed Sci; 1998; 5(1):24-7. PubMed ID: 9570510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation.
    Wu SY; Chiang CM
    J Biol Chem; 2007 May; 282(18):13141-5. PubMed ID: 17329240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HEXIM1-Tat chimera inhibits HIV-1 replication.
    Leoz M; Kukanja P; Luo Z; Huang F; Cary DC; Peterlin BM; Fujinaga K
    PLoS Pathog; 2018 Nov; 14(11):e1007402. PubMed ID: 30395647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brd4 is essential for IL-1β-induced inflammation in human airway epithelial cells.
    Khan YM; Kirkham P; Barnes PJ; Adcock IM
    PLoS One; 2014; 9(4):e95051. PubMed ID: 24759736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WHAT do viruses BET on?
    Weidner-Glunde M; Ottinger M; Schulz TF
    Front Biosci (Landmark Ed); 2010 Jan; 15(2):537-49. PubMed ID: 20036832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in vitro transcription system that recapitulates equine infectious anemia virus tat-mediated inhibition of human immunodeficiency virus type 1 Tat activity demonstrates a role for positive transcription elongation factor b and associated proteins in the mechanism of Tat activation.
    Suñé C; Goldstrohm AC; Peng J; Price DH; Garcia-Blanco MA
    Virology; 2000 Sep; 274(2):356-66. PubMed ID: 10964778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bromo- and extraterminal domain chromatin regulators serve as cofactors for murine leukemia virus integration.
    Gupta SS; Maetzig T; Maertens GN; Sharif A; Rothe M; Weidner-Glunde M; Galla M; Schambach A; Cherepanov P; Schulz TF
    J Virol; 2013 Dec; 87(23):12721-36. PubMed ID: 24049186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Tat/P-TEFb Protein-Protein Interaction Determining Transcriptional Activation of HIV.
    Asamitsu K; Okamoto T
    Curr Pharm Des; 2017; 23(28):4091-4097. PubMed ID: 28699519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional profiles of latent human immunodeficiency virus in infected individuals: effects of Tat on the host and reservoir.
    Lin X; Irwin D; Kanazawa S; Huang L; Romeo J; Yen TS; Peterlin BM
    J Virol; 2003 Aug; 77(15):8227-36. PubMed ID: 12857891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.