BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 2337169)

  • 1. Nerve-induced nonadrenergic vasoconstriction and vasodilatation in skeletal muscle.
    Ohlén A; Persson MG; Lindbom L; Gustafsson LE; Hedqvist P
    Am J Physiol; 1990 May; 258(5 Pt 2):H1334-8. PubMed ID: 2337169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation by neuropeptide Y of parasympathetic nerve-evoked nasal vasodilatation via Y2 prejunctional receptor.
    Lacroix JS; Ulman LG; Potter EK
    Br J Pharmacol; 1994 Oct; 113(2):479-84. PubMed ID: 7834199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possible involvement of neuropeptide Y in sympathetic vascular control of canine skeletal muscle.
    Pernow J; Kahan T; Hjemdahl P; Lundberg JM
    Acta Physiol Scand; 1988 Jan; 132(1):43-50. PubMed ID: 2906210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sympathetic nerve stimulation influences mucociliary activity in the rabbit maxillary sinus.
    Cervin A; Lindberg S; Mercke U
    Acta Physiol Scand; 1991 Dec; 143(4):405-11. PubMed ID: 1687719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sympathetic regulation of skeletal muscle blood flow in the pig: a non-adrenergic component likely to be mediated by neuropeptide Y.
    Modin A; Pernow J; Lundberg JM
    Acta Physiol Scand; 1993 May; 148(1):1-11. PubMed ID: 8333291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of a selective neuropeptide Y Y(1) receptor antagonist BIBP 3226 on double peaked vasoconstrictor responses to periarterial nerve stimulation in canine splenic arteries.
    Yang XP; Chiba S
    Br J Pharmacol; 2000 Aug; 130(7):1699-705. PubMed ID: 10928977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release and vasoconstrictor effects of neuropeptide Y in relation to non-adrenergic sympathetic control of renal blood flow in the pig.
    Pernow J; Lundberg JM
    Acta Physiol Scand; 1989 Aug; 136(4):507-17. PubMed ID: 2571235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-adrenergic, non-cholinergic vascular control with reference to neuropeptide Y, vasoactive intestinal polypeptide and nitric oxide.
    Modin A
    Acta Physiol Scand Suppl; 1994; 622():1-74. PubMed ID: 7524267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of adenosine in functional hyperemia in skeletal muscle as indicated by pharmacological tools.
    Persson MG; Ohlén A; Lindbom L; Hedqvist P; Gustafsson LE
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Jan; 343(1):52-7. PubMed ID: 2030744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of neuropeptide Y-induced augmentation of noradrenaline-induced vasoconstriction by D-myo-inositol 1,2,6-trisphosphate in the rat mesenteric arterial bed.
    Ralevic V; Edvinsson L; Burnstock G
    Acta Physiol Scand; 1994 Jul; 151(3):309-17. PubMed ID: 7976403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuropeptide Y may mediate effects of sympathetic nerve stimulations on colonic motility and blood flow in the cat.
    Hellström PM; Olerup O; Tatemoto K
    Acta Physiol Scand; 1985 Aug; 124(4):613-24. PubMed ID: 2864782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuropeptide Y-induced constriction in small resistance vessels of skeletal muscle.
    Joshua IG
    Peptides; 1991; 12(1):37-41. PubMed ID: 2052498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nerve-induced tachykinin-mediated vasodilation in skeletal muscle is dependent on nitric oxide formation.
    Persson MG; Hedqvist P; Gustafsson LE
    Eur J Pharmacol; 1991 Dec; 205(3):295-301. PubMed ID: 1726318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progressive arteriolar vasoconstriction and fatigue during tetanic contractions of rat skeletal muscle are inhibited by α-receptor blockade.
    Inagaki T; Sonobe T; Poole DC; Kano Y
    J Physiol Sci; 2011 May; 61(3):181-9. PubMed ID: 21312014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide requirement for vasomotor nerve-induced vasodilatation and modulation of resting blood flow in muscle microcirculation.
    Persson MG; Wiklund NP; Gustafsson LE
    Acta Physiol Scand; 1991 Jan; 141(1):49-56. PubMed ID: 2053446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The vasodilator and secretory effects elicited by sympathetic nerve stimulation in cat submandibular gland.
    Izumi H; Karita K
    J Auton Nerv Syst; 1994 Jul; 48(2):143-51. PubMed ID: 8089396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cotransmission from sympathetic vasoconstrictor neurons: differences in guinea-pig mesenteric artery and vein.
    Smyth L; Bobalova J; Ward SM; Keef KD; Mutafova-Yambolieva VN
    Auton Neurosci; 2000 Dec; 86(1-2):18-29. PubMed ID: 11269921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal periarterial nerve stimulation-induced vasoconstriction at low frequencies is primarily due to release of a purinergic transmitter in the rat.
    Schwartz DD; Malik KU
    J Pharmacol Exp Ther; 1989 Sep; 250(3):764-71. PubMed ID: 2570866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced neuropeptide Y immunoreactivity and vasoconstriction in mesenteric small arteries from spontaneously hypertensive rats.
    Gradin KA; Li JY; Andersson O; Simonsen U
    J Vasc Res; 2003; 40(3):252-65. PubMed ID: 12902638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vasodilatation in hind-limb skeletal muscle evoked as part of the defence reaction in the rat.
    Yardley CP; Hilton SM
    J Auton Nerv Syst; 1987 May; 19(2):127-36. PubMed ID: 3598052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.