These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 23371815)
1. Dendron to central core S1-S1 and S2-S(n) (n>1) energy transfers in artificial special pairs containing dendrimers with limited numbers of conformations. Harvey PD; Brégier F; Aly SM; Szmytkowski J; Paige MF; Steer RP Chemistry; 2013 Mar; 19(13):4352-68. PubMed ID: 23371815 [TBL] [Abstract][Full Text] [Related]
2. Design and photophysical properties of zinc(II) porphyrin-containing dendrons linked to a central artificial special pair. Brégier F; Aly SM; Gros CP; Barbe JM; Rousselin Y; Harvey PD Chemistry; 2011 Dec; 17(51):14643-62. PubMed ID: 22083850 [TBL] [Abstract][Full Text] [Related]
3. Modulation of the singlet-singlet through-space energy transfer rates in cofacial bisporphyrin and porphyrin-corrole dyads. Gros CP; Brisach F; Meristoudi A; Espinosa E; Guilard R; Harvey PD Inorg Chem; 2007 Jan; 46(1):125-35. PubMed ID: 17198420 [TBL] [Abstract][Full Text] [Related]
4. Efficient excitation energy transfer in long meso-meso linked Zn(II) porphyrin arrays bearing a 5,15-bisphenylethynylated Zn(II) porphyrin acceptor. Aratani N; Cho HS; Ahn TK; Cho S; Kim D; Sumi H; Osuka A J Am Chem Soc; 2003 Aug; 125(32):9668-81. PubMed ID: 12904033 [TBL] [Abstract][Full Text] [Related]
5. Triplet-triplet energy transfer controlled by the donor-acceptor distance in rigidly held palladium-containing cofacial bisporphyrins. Faure S; Stern C; Espinosa E; Douville J; Guilard R; Harvey PD Chemistry; 2005 May; 11(11):3469-81. PubMed ID: 15812878 [TBL] [Abstract][Full Text] [Related]
6. Structural induced control of energy transfer within Zn(II)-porphyrin dendrimers. Larsen J; Brüggemann B; Khoury T; Sly J; Crossley MJ; Sundström V; Akesson E J Phys Chem A; 2007 Oct; 111(42):10589-97. PubMed ID: 17914756 [TBL] [Abstract][Full Text] [Related]
7. Relationship between incoherent excitation energy migration processes and molecular structures in zinc(II) porphyrin dendrimers. Cho S; Li WS; Yoon MC; Ahn TK; Jiang DL; Kim J; Aida T; Kim D Chemistry; 2006 Oct; 12(29):7576-84. PubMed ID: 16927274 [TBL] [Abstract][Full Text] [Related]
8. Long-lived, charge-shift states in heterometallic, porphyrin-based dendrimers formed via click chemistry. Le Pleux L; Pellegrin Y; Blart E; Odobel F; Harriman A J Phys Chem A; 2011 May; 115(20):5069-80. PubMed ID: 21534563 [TBL] [Abstract][Full Text] [Related]
9. A versatile bis-porphyrin tweezer host for the assembly of noncovalent photoactive architectures: a photophysical characterization of the tweezers and their association with porphyrins and other guests. Flamigni L; Talarico AM; Ventura B; Rein R; Solladié N Chemistry; 2006 Jan; 12(3):701-12. PubMed ID: 16224770 [TBL] [Abstract][Full Text] [Related]
10. Intramolecular axial ligation of zinc porphyrin cores with triazole links within dendrimers. Kimura M; Nakano Y; Adachi N; Tatewaki Y; Shirai H; Kobayashi N Chemistry; 2009 Mar; 15(11):2617-24. PubMed ID: 19185040 [TBL] [Abstract][Full Text] [Related]
11. Intramolecular and intermolecular energy transfers in donor-acceptor linear porphyrin arrays. Rhee H; Joo T; Aratani N; Osuka A; Cho S; Kim D J Chem Phys; 2006 Aug; 125(7):074902. PubMed ID: 16942375 [TBL] [Abstract][Full Text] [Related]
12. Acceleration of the through space S1 energy transfer rates in cofacial bisporphyrin bio-inspired models by virtue of substituents effect on the Förster J integral and its implication in the antenna effect in the photosystems. Camus JM; Aly SM; Stern C; Guilard R; Harvey PD Chem Commun (Camb); 2011 Aug; 47(31):8817-9. PubMed ID: 21748167 [TBL] [Abstract][Full Text] [Related]
13. Is the special pair structure a good strategy for the kinetics during the last step of the energy transfer with the nearest antenna? A chemical model approach. Camus JM; Langlois A; Aly SM; Guilard R; Harvey PD Chem Commun (Camb); 2013 Mar; 49(22):2228-30. PubMed ID: 23396549 [TBL] [Abstract][Full Text] [Related]
14. Structural dependence on excitation energy migration processes in artificial light harvesting cyclic zinc(II) porphyrin arrays. Yoon MC; Cho S; Kim P; Hori T; Aratani N; Osuka A; Kim D J Phys Chem B; 2009 Nov; 113(45):15074-82. PubMed ID: 19807140 [TBL] [Abstract][Full Text] [Related]
15. Singlet and triplet energy transfers in tetra-(meso-truxene)zinc(II)- and tetra-(meso-tritruxene)zinc(II) porphyrin and porphyrin-free base dendrimers. Du B; Fortin D; Harvey PD Inorg Chem; 2011 Nov; 50(22):11493-505. PubMed ID: 22017417 [TBL] [Abstract][Full Text] [Related]
16. Design of triads for probing the direct through space energy transfers in closely spaced assemblies. Camus JM; Aly SM; Fortin D; Guilard R; Harvey PD Inorg Chem; 2013 Aug; 52(15):8360-8. PubMed ID: 23844900 [TBL] [Abstract][Full Text] [Related]
17. Probing stepwise complexation in phenylazomethine dendrimers by a metallo-porphyrin core. Imaoka T; Tanaka R; Arimoto S; Sakai M; Fujii M; Yamamoto K J Am Chem Soc; 2005 Oct; 127(40):13896-905. PubMed ID: 16201811 [TBL] [Abstract][Full Text] [Related]
18. Testing electron transfer within molecular associates built around anionic C60 and C70 dendrofullerenes and a cationic zinc porphyrin. Sarova GH; Hartnagel U; Balbinot D; Sali S; Jux N; Hirsch A; Guldi DM Chemistry; 2008; 14(10):3137-45. PubMed ID: 18246558 [TBL] [Abstract][Full Text] [Related]
19. Role of the spacer in the singlet-singlet energy transfer mechanism (Förster vs Dexter) in cofacial bisporphyrins. Faure S; Stern C; Guilard R; Harvey PD J Am Chem Soc; 2004 Feb; 126(4):1253-61. PubMed ID: 14746498 [TBL] [Abstract][Full Text] [Related]
20. Comments on the through-space singlet energy transfers and energy migration (exciton) in the light harvesting systems. Harvey PD; Stern C; Gros CP; Guilard R J Inorg Biochem; 2008 Mar; 102(3):395-405. PubMed ID: 18160130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]