BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 23372159)

  • 1. Molecular and structural basis of inner core lipopolysaccharide alterations in Escherichia coli: incorporation of glucuronic acid and phosphoethanolamine in the heptose region.
    Klein G; Müller-Loennies S; Lindner B; Kobylak N; Brade H; Raina S
    J Biol Chem; 2013 Mar; 288(12):8111-8127. PubMed ID: 23372159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoethanolamine addition to the Heptose I of the Lipopolysaccharide modifies the inner core structure and has an impact on the binding of Polymyxin B to the Escherichia coli outer membrane.
    Salazar J; Alarcón M; Huerta J; Navarro B; Aguayo D
    Arch Biochem Biophys; 2017 Apr; 620():28-34. PubMed ID: 28342805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and characterization of the Escherichia coli Heptosyltransferase III: Exploring substrate specificity in lipopolysaccharide core biosynthesis.
    Mudapaka J; Taylor EA
    FEBS Lett; 2015 Jun; 589(13):1423-9. PubMed ID: 25957775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant.
    Reynolds CM; Kalb SR; Cotter RJ; Raetz CR
    J Biol Chem; 2005 Jun; 280(22):21202-11. PubMed ID: 15795227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis of lipopolysaccharide heterogeneity in Escherichia coli: envelope stress-responsive regulators control the incorporation of glycoforms with a third 3-deoxy-α-D-manno-oct-2-ulosonic acid and rhamnose.
    Klein G; Lindner B; Brade H; Raina S
    J Biol Chem; 2011 Dec; 286(50):42787-807. PubMed ID: 22021036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the Escherichia coli heptosyltransferase WaaC: binary complexes with ADP and ADP-2-deoxy-2-fluoro heptose.
    Grizot S; Salem M; Vongsouthi V; Durand L; Moreau F; Dohi H; Vincent S; Escaich S; Ducruix A
    J Mol Biol; 2006 Oct; 363(2):383-94. PubMed ID: 16963083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+-induced phosphoethanolamine transfer to the outer 3-deoxy-D-manno-octulosonic acid moiety of Escherichia coli lipopolysaccharide. A novel membrane enzyme dependent upon phosphatidylethanolamine.
    Kanipes MI; Lin S; Cotter RJ; Raetz CR
    J Biol Chem; 2001 Jan; 276(2):1156-63. PubMed ID: 11042192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of the waaZ gene leads to modification of the structure of the inner core region of Escherichia coli lipopolysaccharide, truncation of the outer core, and reduction of the amount of O polysaccharide on the cell surface.
    Frirdich E; Lindner B; Holst O; Whitfield C
    J Bacteriol; 2003 Mar; 185(5):1659-71. PubMed ID: 12591884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a cross-reactive epitope widely present in lipopolysaccharide from enterobacteria and recognized by the cross-protective monoclonal antibody WN1 222-5.
    Muller-Loennies S; Brade L; MacKenzie CR; Di Padova FE; Brade H
    J Biol Chem; 2003 Jul; 278(28):25618-27. PubMed ID: 12716894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular analysis of the rfaD gene, for heptose synthesis, and the rfaF gene, for heptose transfer, in lipopolysaccharide synthesis in Salmonella typhimurium.
    Sirisena DM; MacLachlan PR; Liu SL; Hessel A; Sanderson KE
    J Bacteriol; 1994 Apr; 176(8):2379-85. PubMed ID: 8157607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rfaE gene from Escherichia coli encodes a bifunctional protein involved in biosynthesis of the lipopolysaccharide core precursor ADP-L-glycero-D-manno-heptose.
    Valvano MA; Marolda CL; Bittner M; Glaskin-Clay M; Simon TL; Klena JD
    J Bacteriol; 2000 Jan; 182(2):488-97. PubMed ID: 10629197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of heptoses and the inner core of bacterial lipopolysaccharides by surfactant protein d.
    Wang H; Head J; Kosma P; Brade H; Müller-Loennies S; Sheikh S; McDonald B; Smith K; Cafarella T; Seaton B; Crouch E
    Biochemistry; 2008 Jan; 47(2):710-20. PubMed ID: 18092821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipopolysaccharide Phosphorylation by the WaaY Kinase Affects the Susceptibility of Escherichia coli to the Human Antimicrobial Peptide LL-37.
    Bociek K; Ferluga S; Mardirossian M; Benincasa M; Tossi A; Gennaro R; Scocchi M
    J Biol Chem; 2015 Aug; 290(32):19933-41. PubMed ID: 26100635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosomal and plasmid-encoded enzymes are required for assembly of the R3-type core oligosaccharide in the lipopolysaccharide of Escherichia coli O157:H7.
    Kaniuk NA; Vinogradov E; Li J; Monteiro MA; Whitfield C
    J Biol Chem; 2004 Jul; 279(30):31237-50. PubMed ID: 15155763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of lipopolysaccharide in Escherichia coli requires the essential LapB heat shock protein.
    Klein G; Kobylak N; Lindner B; Stupak A; Raina S
    J Biol Chem; 2014 May; 289(21):14829-53. PubMed ID: 24722986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of the heptose/hexose region of the lipopolysaccharide from Escherichia coli K-12 strain W3100.
    Holst O; Zähringer U; Brade H; Zamojski A
    Carbohydr Res; 1991 Aug; 215(2):323-35. PubMed ID: 1794130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and characterization of the Escherichia coli K-12 rfa-2 (rfaC) gene, a gene required for lipopolysaccharide inner core synthesis.
    Chen L; Coleman WG
    J Bacteriol; 1993 May; 175(9):2534-40. PubMed ID: 8478319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Structure of the heptose region of the lipopolysaccharide from Escherichia coli K12 CR34 (author's transl)].
    Blache D; Bruneteau M; Michel G
    Eur J Biochem; 1981 Jan; 113(3):563-8. PubMed ID: 7011798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin.
    Benz I; Schmidt MA
    Mol Microbiol; 2001 Jun; 40(6):1403-13. PubMed ID: 11442838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of the K40 antigen in Escherichia coli: identification of a novel enzyme responsible for addition of L-serine residues to the glycan backbone and its requirement for K40 polymerization.
    Amor PA; Yethon JA; Monteiro MA; Whitfield C
    J Bacteriol; 1999 Feb; 181(3):772-80. PubMed ID: 9922239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.