These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 23373423)
1. A folded excited state of ligand-free nuclear coactivator binding domain (NCBD) underlies plasticity in ligand recognition. Kjaergaard M; Andersen L; Nielsen LD; Teilum K Biochemistry; 2013 Mar; 52(10):1686-93. PubMed ID: 23373423 [TBL] [Abstract][Full Text] [Related]
2. Synergistic folding of two intrinsically disordered proteins: searching for conformational selection. Ganguly D; Zhang W; Chen J Mol Biosyst; 2012 Jan; 8(1):198-209. PubMed ID: 21766125 [TBL] [Abstract][Full Text] [Related]
3. Helical propensity in an intrinsically disordered protein accelerates ligand binding. Iešmantavičius V; Dogan J; Jemth P; Teilum K; Kjaergaard M Angew Chem Int Ed Engl; 2014 Feb; 53(6):1548-51. PubMed ID: 24449148 [TBL] [Abstract][Full Text] [Related]
4. A structurally heterogeneous transition state underlies coupled binding and folding of disordered proteins. Karlsson E; Andersson E; Dogan J; Gianni S; Jemth P; Camilloni C J Biol Chem; 2019 Jan; 294(4):1230-1239. PubMed ID: 30514761 [TBL] [Abstract][Full Text] [Related]
5. Conformational selection in the molten globule state of the nuclear coactivator binding domain of CBP. Kjaergaard M; Teilum K; Poulsen FM Proc Natl Acad Sci U S A; 2010 Jul; 107(28):12535-40. PubMed ID: 20616042 [TBL] [Abstract][Full Text] [Related]
6. Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. Arai M; Sugase K; Dyson HJ; Wright PE Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9614-9. PubMed ID: 26195786 [TBL] [Abstract][Full Text] [Related]
7. Is a malleable protein necessarily highly dynamic? The hydrophobic core of the nuclear coactivator binding domain is well ordered. Kjaergaard M; Poulsen FM; Teilum K Biophys J; 2012 Apr; 102(7):1627-35. PubMed ID: 22500763 [TBL] [Abstract][Full Text] [Related]
8. Mapping the transition state for a binding reaction between ancient intrinsically disordered proteins. Karlsson E; Paissoni C; Erkelens AM; Tehranizadeh ZA; Sorgenfrei FA; Andersson E; Ye W; Camilloni C; Jemth P J Biol Chem; 2020 Dec; 295(51):17698-17712. PubMed ID: 33454008 [TBL] [Abstract][Full Text] [Related]
9. Residual Structure Accelerates Binding of Intrinsically Disordered ACTR by Promoting Efficient Folding upon Encounter. Liu X; Chen J; Chen J J Mol Biol; 2019 Jan; 431(2):422-432. PubMed ID: 30528464 [TBL] [Abstract][Full Text] [Related]
10. Single-molecule studies of intrinsically disordered proteins using solid-state nanopores. Japrung D; Dogan J; Freedman KJ; Nadzeyka A; Bauerdick S; Albrecht T; Kim MJ; Jemth P; Edel JB Anal Chem; 2013 Feb; 85(4):2449-56. PubMed ID: 23327569 [TBL] [Abstract][Full Text] [Related]
11. Activation Barrier-Limited Folding and Conformational Sampling of a Dynamic Protein Domain. Dogan J; Toto A; Andersson E; Gianni S; Jemth P Biochemistry; 2016 Sep; 55(37):5289-95. PubMed ID: 27542287 [TBL] [Abstract][Full Text] [Related]
12. Quasi-anharmonic analysis reveals intermediate states in the nuclear co-activator receptor binding domain ensemble. Burger VM; Ramanathan A; Savol AJ; Stanley CB; Agarwal PK; Chennubhotla CS Pac Symp Biocomput; 2012; ():70-81. PubMed ID: 22174264 [TBL] [Abstract][Full Text] [Related]
13. Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins. Jemth P; Karlsson E; Vögeli B; Guzovsky B; Andersson E; Hultqvist G; Dogan J; Güntert P; Riek R; Chi CN Sci Adv; 2018 Oct; 4(10):eaau4130. PubMed ID: 30397651 [TBL] [Abstract][Full Text] [Related]
14. Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Lee CW; Martinez-Yamout MA; Dyson HJ; Wright PE Biochemistry; 2010 Nov; 49(46):9964-71. PubMed ID: 20961098 [TBL] [Abstract][Full Text] [Related]
15. Folding of the KIX domain: characterization of the equilibrium analog of a folding intermediate using 15N/13C relaxation dispersion and fast 1H/2H amide exchange NMR spectroscopy. Schanda P; Brutscher B; Konrat R; Tollinger M J Mol Biol; 2008 Jul; 380(4):726-41. PubMed ID: 18565542 [TBL] [Abstract][Full Text] [Related]
16. NMR relaxation study of the complex formed between CBP and the activation domain of the nuclear hormone receptor coactivator ACTR. Ebert MO; Bae SH; Dyson HJ; Wright PE Biochemistry; 2008 Feb; 47(5):1299-308. PubMed ID: 18177052 [TBL] [Abstract][Full Text] [Related]
17. Mapping unstructured regions and synergistic folding in intrinsically disordered proteins with amide H/D exchange mass spectrometry. Keppel TR; Howard BA; Weis DD Biochemistry; 2011 Oct; 50(40):8722-32. PubMed ID: 21894929 [TBL] [Abstract][Full Text] [Related]
18. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos. Xue Y; Yuwen T; Zhu F; Skrynnikov NR Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671 [TBL] [Abstract][Full Text] [Related]
19. Quantifying Protection in Disordered Proteins Using Millisecond Hydrogen Exchange-Mass Spectrometry and Peptic Reference Peptides. Al-Naqshabandi MA; Weis DD Biochemistry; 2017 Aug; 56(31):4064-4072. PubMed ID: 28675294 [TBL] [Abstract][Full Text] [Related]
20. Residual structures, conformational fluctuations, and electrostatic interactions in the synergistic folding of two intrinsically disordered proteins. Zhang W; Ganguly D; Chen J PLoS Comput Biol; 2012 Jan; 8(1):e1002353. PubMed ID: 22253588 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]