BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 23373789)

  • 1. Benzotriazole-mediated synthesis of aza-peptides: en route to an aza-leuenkephalin analogue.
    Abo-Dya NE; Biswas S; Basak A; Avan I; Alamry KA; Katritzky AR
    J Org Chem; 2013 Apr; 78(8):3541-52. PubMed ID: 23373789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aza-amino acid scan for rapid identification of secondary structure based on the application of N-Boc-aza(1)-dipeptides in peptide synthesis.
    Melendez RE; Lubell WD
    J Am Chem Soc; 2004 Jun; 126(21):6759-64. PubMed ID: 15161304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benzotriazole-assisted solid-phase assembly of Leu-enkephalin, amyloid beta segment 34-42, and other "difficult" peptide sequences.
    Katritzky AR; Haase DN; Johnson JV; Chung A
    J Org Chem; 2009 Mar; 74(5):2028-32. PubMed ID: 19196166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aza-amino acid scanning of secondary structure suited for solid-phase peptide synthesis with fmoc chemistry and aza-amino acids with heteroatomic side chains.
    Boeglin D; Lubell WD
    J Comb Chem; 2005; 7(6):864-78. PubMed ID: 16283795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HBTU mediated 1-hydroxybenzotriazole (HOBt) conjugate addition: synthesis and stereochemical analysis of β-benzotriazole N-oxide substituted γ-amino acids and hybrid peptides.
    Mali SM; Ganesh Kumar M; Katariya MM; Gopi HN
    Org Biomol Chem; 2014 Nov; 12(42):8462-72. PubMed ID: 25228027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide synthesis 'in water' by a solution-phase method using water-dispersible nanoparticle Boc-amino acid.
    Hojo K; Ichikawa H; Onishi M; Fukumori Y; Kawasaki K
    J Pept Sci; 2011 Jul; 17(7):487-92. PubMed ID: 21495120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-phase peptide synthesis using nanoparticulate amino acids in water.
    Hojo K; Ichikawa H; Maeda M; Kida S; Fukumori Y; Kawasaki K
    J Pept Sci; 2007 Jul; 13(7):493-7. PubMed ID: 17554805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of azaalanine peptides using the solid phase method.
    Gray CJ; Desai NI; Gorst R; Masih G
    Biomed Pept Proteins Nucleic Acids; 1996; 2(1):13-8. PubMed ID: 9346831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and conformational studies of peptidomimetics containing furanoid sugar amino acids and a sugar diacid.
    Chakraborty TK; Ghosh S; Jayaprakash S; Sarma JA; Ravikanth V; Diwan PV; Nagaraj R; Kunwar AC
    J Org Chem; 2000 Oct; 65(20):6441-57. PubMed ID: 11052087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New and efficient synthesis of azabicyclo[4.4.0]alkane amino acids by Rh-catalyzed cyclohydrocarbonylation.
    Mizutani N; Chiou WH; Ojima I
    Org Lett; 2002 Dec; 4(26):4575-8. PubMed ID: 12489933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benzophenone semicarbazone protection strategy for synthesis of aza-glycine containing aza-peptides.
    Bourguet CB; Sabatino D; Lubell WD
    Biopolymers; 2008; 90(6):824-31. PubMed ID: 18844293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and properties of the first all-aza analogue of a biologically active peptide.
    Gante J; Krug M; Lauterbach G; Weitzel R; Hiller W
    J Pept Sci; 1995; 1(3):201-6. PubMed ID: 9222997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polypeptides. Part XIII. Preparation of alpha-aza-amino-acid (carbazic acid) derivatives and intermediates for the preparation of alpha-aza-peptides.
    Dutta AS; Morley JS
    J Chem Soc Perkin 1; 1975; (17):1712-20. PubMed ID: 1171892
    [No Abstract]   [Full Text] [Related]  

  • 14. Fmoc-amino acid chlorides in solid phase synthesis of opioid peptides.
    Sivanandaiah KM; Babu VV; Renukeshwar C
    Int J Pept Protein Res; 1992 Mar; 39(3):201-6. PubMed ID: 1399258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper-catalyzed N-arylation of semicarbazones for the synthesis of aza-arylglycine-containing aza-peptides.
    Proulx C; Lubell WD
    Org Lett; 2010 Jul; 12(13):2916-9. PubMed ID: 20536163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analogues of both Leu- and Met-enkephalin containing a constrained dipeptide isostere prepared from a Baylis-Hillman adduct.
    Galeazzi R; Martelli G; Marcucci E; Orena M; Rinaldi S; Lattanzi R; Negri L
    Amino Acids; 2010 Apr; 38(4):1057-65. PubMed ID: 19585218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silyl-based alkyne-modifying linker for the preparation of C-terminal acetylene-derivatized protected peptides.
    Strack M; Langklotz S; Bandow JE; Metzler-Nolte N; Albada HB
    J Org Chem; 2012 Nov; 77(22):9954-8. PubMed ID: 23116417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An access to aza-Freidinger lactams and E-locked analogs.
    Ottersbach PA; Schmitz J; Schnakenburg G; Gütschow M
    Org Lett; 2013 Feb; 15(3):448-51. PubMed ID: 23320486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselective alpha-silyl amino acid synthesis by reverse-aza-Brook rearrangement.
    Liu G; Sieburth SM
    Org Lett; 2003 Nov; 5(24):4677-9. PubMed ID: 14627413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity-oriented synthesis of azapeptides with basic amino acid residues: aza-lysine, aza-ornithine, and aza-arginine.
    Traoré M; Doan ND; Lubell WD
    Org Lett; 2014 Jul; 16(13):3588-91. PubMed ID: 24959890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.