These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23373907)

  • 1. Security of continuous-variable quantum key distribution against general attacks.
    Leverrier A; García-Patrón R; Renner R; Cerf NJ
    Phys Rev Lett; 2013 Jan; 110(3):030502. PubMed ID: 23373907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Security of Continuous-Variable Quantum Key Distribution via a Gaussian de Finetti Reduction.
    Leverrier A
    Phys Rev Lett; 2017 May; 118(20):200501. PubMed ID: 28581779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composable security proof for continuous-variable quantum key distribution with coherent States.
    Leverrier A
    Phys Rev Lett; 2015 Feb; 114(7):070501. PubMed ID: 25763943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postselection technique for quantum channels with applications to quantum cryptography.
    Christandl M; König R; Renner R
    Phys Rev Lett; 2009 Jan; 102(2):020504. PubMed ID: 19257257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography.
    Renner R; Cirac JI
    Phys Rev Lett; 2009 Mar; 102(11):110504. PubMed ID: 19392183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution.
    García-Patrón R; Cerf NJ
    Phys Rev Lett; 2006 Nov; 97(19):190503. PubMed ID: 17155606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collective attacks and unconditional security in continuous variable quantum key distribution.
    Grosshans F
    Phys Rev Lett; 2005 Jan; 94(2):020504. PubMed ID: 15698157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-size security of continuous-variable quantum key distribution with digital signal processing.
    Matsuura T; Maeda K; Sasaki T; Koashi M
    Nat Commun; 2021 Jan; 12(1):252. PubMed ID: 33441559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing.
    Scarani V; Renner R
    Phys Rev Lett; 2008 May; 100(20):200501. PubMed ID: 18518517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous-variable quantum cryptography is secure against non-Gaussian attacks.
    Grosshans F; Cerf NJ
    Phys Rev Lett; 2004 Jan; 92(4):047905. PubMed ID: 14995411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks.
    Furrer F; Franz T; Berta M; Leverrier A; Scholz VB; Tomamichel M; Werner RF
    Phys Rev Lett; 2012 Sep; 109(10):100502. PubMed ID: 23005270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks.
    Gehring T; Händchen V; Duhme J; Furrer F; Franz T; Pacher C; Werner RF; Schnabel R
    Nat Commun; 2015 Oct; 6():8795. PubMed ID: 26514280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous variable quantum cryptography using coherent states.
    Grosshans F; Grangier P
    Phys Rev Lett; 2002 Feb; 88(5):057902. PubMed ID: 11863782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system.
    Lodewyck J; Debuisschert T; García-Patrón R; Tualle-Brouri R; Cerf NJ; Grangier P
    Phys Rev Lett; 2007 Jan; 98(3):030503. PubMed ID: 17358671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. No signaling and quantum key distribution.
    Barrett J; Hardy L; Kent A
    Phys Rev Lett; 2005 Jul; 95(1):010503. PubMed ID: 16090597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Security Analysis of a Passive Continuous-Variable Quantum Key Distribution by Considering Finite-Size Effect.
    Xu S; Li Y; Wang Y; Mao Y; Wu X; Guo Y
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34946004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Security of distributed-phase-reference quantum key distribution.
    Moroder T; Curty M; Lim CC; Thinh le P; Zbinden H; Gisin N
    Phys Rev Lett; 2012 Dec; 109(26):260501. PubMed ID: 23368542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical continuous-variable quantum key distribution with composable security.
    Jain N; Chin HM; Mani H; Lupo C; Nikolic DS; Kordts A; Pirandola S; Pedersen TB; Kolb M; Ömer B; Pacher C; Gehring T; Andersen UL
    Nat Commun; 2022 Aug; 13(1):4740. PubMed ID: 35961965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practical limitation for continuous-variable quantum cryptography using coherent States.
    Namiki R; Hirano T
    Phys Rev Lett; 2004 Mar; 92(11):117901. PubMed ID: 15089171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite-key analysis for twin-field quantum key distribution with composable security.
    Yin HL; Chen ZB
    Sci Rep; 2019 Nov; 9(1):17113. PubMed ID: 31745131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.