These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23373936)

  • 1. Forces during the controlled displacement of organic molecules.
    Langewisch G; Falter J; Fuchs H; Schirmeisen A
    Phys Rev Lett; 2013 Jan; 110(3):036101. PubMed ID: 23373936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Submolecular Imaging by Noncontact Atomic Force Microscopy with an Oxygen Atom Rigidly Connected to a Metallic Probe.
    Mönig H; Hermoso DR; Díaz Arado O; Todorović M; Timmer A; Schüer S; Langewisch G; Pérez R; Fuchs H
    ACS Nano; 2016 Jan; 10(1):1201-9. PubMed ID: 26605698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the adsorption geometry of PTCDA on Ag(111) on the tip-molecule forces in non-contact atomic force microscopy.
    Langewisch G; Falter J; Schirmeisen A; Fuchs H
    Beilstein J Nanotechnol; 2014; 5():98-104. PubMed ID: 24611130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical modelling of tip effects in the pushing manipulation of C(60) on the Si(001) surface.
    Martsinovich N; Kantorovich L
    Nanotechnology; 2008 Jun; 19(23):235702. PubMed ID: 21825801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules.
    Leinen P; Green MF; Esat T; Wagner C; Tautz FS; Temirov R
    Beilstein J Nanotechnol; 2015; 6():2148-53. PubMed ID: 26665087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding dissipative tip-molecule interactions with submolecular resolution on an organic adsorbate.
    Langewisch G; Kamiński W; Braun DA; Möller R; Fuchs H; Schirmeisen A; Pérez R
    Small; 2012 Feb; 8(4):602-11. PubMed ID: 22282299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO-tip manipulation using repulsive interactions.
    Nazriq NKM; Minamitani E; Yamada TK
    Nanotechnology; 2018 Dec; 29(49):495701. PubMed ID: 30207541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The force needed to move an atom on a surface.
    Ternes M; Lutz CP; Hirjibehedin CF; Giessibl FJ; Heinrich AJ
    Science; 2008 Feb; 319(5866):1066-9. PubMed ID: 18292336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation of individual water molecules on CeO2(111).
    Torbrügge S; Custance O; Morita S; Reichling M
    J Phys Condens Matter; 2012 Feb; 24(8):084010. PubMed ID: 22310490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of surface corrugation and tip oscillation in single-molecule manipulation with a non-contact atomic force microscope.
    Wagner C; Fournier N; Tautz FS; Temirov R
    Beilstein J Nanotechnol; 2014; 5():202-9. PubMed ID: 24605287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of single-molecule nanocars.
    Vives G; Tour JM
    Acc Chem Res; 2009 Mar; 42(3):473-87. PubMed ID: 19245268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force field analysis suggests a lowering of diffusion barriers in atomic manipulation due to presence of STM tip.
    Emmrich M; Schneiderbauer M; Huber F; Weymouth AJ; Okabayashi N; Giessibl FJ
    Phys Rev Lett; 2015 Apr; 114(14):146101. PubMed ID: 25910137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring atomic-scale lateral forces in the attractive regime: a case study on graphite (0001).
    Baykara MZ; Schwendemann TC; Albers BJ; Pilet N; Mönig H; Altman EI; Schwarz UD
    Nanotechnology; 2012 Oct; 23(40):405703. PubMed ID: 22995789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PTCDA molecules on an InSb(001) surface studied with atomic force microscopy.
    Kolodziej JJ; Goryl M; Konior J; Krok F; Szymonski M
    Nanotechnology; 2007 Apr; 18(13):135302. PubMed ID: 21730376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Molecule Tribology: Force Microscopy Manipulation of a Porphyrin Derivative on a Copper Surface.
    Pawlak R; Ouyang W; Filippov AE; Kalikhman-Razvozov L; Kawai S; Glatzel T; Gnecco E; Baratoff A; Zheng Q; Hod O; Urbakh M; Meyer E
    ACS Nano; 2016 Jan; 10(1):713-22. PubMed ID: 26571003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical and Chemical Interactions in Atomically Defined Contacts.
    Yesilpinar D; Schulze Lammers B; Timmer A; Hu Z; Ji W; Amirjalayer S; Fuchs H; Mönig H
    Small; 2021 Sep; 17(35):e2101637. PubMed ID: 34288402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring the local interaction between graphene layers in graphite at the atomic scale and above using scanning tunneling microscopy.
    Wong HS; Durkan C; Chandrasekhar N
    ACS Nano; 2009 Nov; 3(11):3455-62. PubMed ID: 19795900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atom inlays performed at room temperature using atomic force microscopy.
    Sugimoto Y; Abe M; Hirayama S; Oyabu N; Custance O; Morita S
    Nat Mater; 2005 Feb; 4(2):156-9. PubMed ID: 15654346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateral manipulation of atomic size defects on the CaF(2)(111) surface.
    Hirth S; Ostendorf F; Reichling M
    Nanotechnology; 2006 Apr; 17(7):S148-54. PubMed ID: 21727406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.