These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23373986)

  • 21. Genetic Structure of Zymoseptoria tritici in Northern France at Region, Field, Plant, and Leaf Layer Scales.
    Siah A; Bomble M; Tisserant B; Cadalen T; Holvoet M; Hilbert JL; Halama P; Reignault P
    Phytopathology; 2018 Sep; 108(9):1114-1123. PubMed ID: 29658841
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cultivation Intensity in Combination with Other Ecological Factors as Limiting Ones for the Abundance of Phytopathogenic Fungi on Wheat.
    Hýsek J; Vavera R; Růžek P
    Microb Ecol; 2019 Oct; 78(3):565-574. PubMed ID: 30895363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wheat leaf photosynthesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status.
    Robert C; Bancal MO; Ney B; Lannou C
    New Phytol; 2005 Jan; 165(1):227-41. PubMed ID: 15720636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptional adaptation of Mycosphaerella graminicola to programmed cell death (PCD) of its susceptible wheat host.
    Keon J; Antoniw J; Carzaniga R; Deller S; Ward JL; Baker JM; Beale MH; Hammond-Kosack K; Rudd JJ
    Mol Plant Microbe Interact; 2007 Feb; 20(2):178-93. PubMed ID: 17313169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PROTECTION EFFICACY AND MODES OF ACTION OF TWO RESISTANCE INDUCERS ON WHEAT AGAINST SEPTORIA TRITICI BLOTCH.
    Ors M; Siah A; Randoux B; Selim S; Couleaud G; Maumene C; Sahmer K; Reignault P; Halama P
    Commun Agric Appl Biol Sci; 2014; 79(3):411-9. PubMed ID: 26080476
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term relationships between environment and abundance in wheat of Phaeosphaeria nodorum and Mycosphaerella graminicola.
    Shaw MW; Bearchell SJ; Fitt BDL; Fraaije BA
    New Phytol; 2008; 177(1):229-238. PubMed ID: 17944823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Local dispersal of Puccinia triticina and wheat canopy structure.
    Frezal L; Robert C; Bancal MO; Lannou C
    Phytopathology; 2009 Oct; 99(10):1216-24. PubMed ID: 19740036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Some endophytic fungi reduce the density of pustules of Puccinia recondita f. sp. tritici in wheat.
    Dingle J; McGee PA
    Mycol Res; 2003 Mar; 107(Pt 3):310-6. PubMed ID: 12825500
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Competition, facilitation, and niche differentiation in two foliar pathogens.
    Al-Naimi FA; Garrett KA; Bockus WW
    Oecologia; 2005 Apr; 143(3):449-57. PubMed ID: 15711822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measuring quantitative virulence in the wheat pathogen Zymoseptoria tritici using high-throughput automated image analysis.
    Stewart EL; McDonald BA
    Phytopathology; 2014 Sep; 104(9):985-92. PubMed ID: 24624955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fungal pathogens of Miconia calvescens (Melastomataceae) from Brazil, with reference to classical biological control.
    Seixas CD; Barreto RW; Killgore E
    Mycologia; 2007; 99(1):99-111. PubMed ID: 17663128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PLANT OLIGOSACCHARIDES ENHANCE WHEAT DEFENCE RESPONSE AGAINST SEPTORIA LEAF BLOTCH.
    Somai-Jemmali L; Siah A; Randoux B; Reignault P; Halama P; Rodriguez R; Hamada W
    Commun Agric Appl Biol Sci; 2015; 80(3):465-75. PubMed ID: 27141743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two Mycosphaerella graminicola French isolates differ in symptoms, in planta sporulation and cell wall degrading enzymes in vitro production.
    Siah A; Deweer C; Reignault P; Halama P
    Commun Agric Appl Biol Sci; 2007; 72(4):867-74. PubMed ID: 18396822
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of Mycosphaerella graminicola resistance to azoxystrobin.
    Siah A; Deweer C; Morand E; Reignault P; Halama P
    Commun Agric Appl Biol Sci; 2008; 73(2):41-9. PubMed ID: 19226740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Avirulence in the wheat septoria tritici leaf blotch fungus Mycosphaerella graminicola is controlled by a single locus.
    Kema GH; Verstappen EC; Waalwijk C
    Mol Plant Microbe Interact; 2000 Dec; 13(12):1375-9. PubMed ID: 11106030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stagonospora nodorum: from pathology to genomics and host resistance.
    Oliver RP; Friesen TL; Faris JD; Solomon PS
    Annu Rev Phytopathol; 2012; 50():23-43. PubMed ID: 22559071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimal fungicide application timings for disease control are also an effective anti-resistance strategy: a case study for Zymoseptoria tritici (Mycosphaerella graminicola) on wheat.
    van den Berg F; van den Bosch F; Paveley ND
    Phytopathology; 2013 Dec; 103(12):1209-19. PubMed ID: 23859011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fashionably late partners have more fruitful encounters: Impact of the timing of co-infection and pathogenicity on sexual reproduction in Zymoseptoria tritici.
    Suffert F; Delestre G; Carpentier F; Gazeau G; Walker AS; Gélisse S; Duplaix C
    Fungal Genet Biol; 2016 Jul; 92():40-9. PubMed ID: 27178650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vortex-induced dispersal of a plant pathogen by raindrop impact.
    Kim S; Park H; Gruszewski HA; Schmale DG; Jung S
    Proc Natl Acad Sci U S A; 2019 Mar; 116(11):4917-4922. PubMed ID: 30804195
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow.
    Zhan J; Pettway RE; McDonald BA
    Fungal Genet Biol; 2003 Apr; 38(3):286-97. PubMed ID: 12684018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.