These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 23373987)
1. Out-of-focus low pressure pulse pretreatment to the whole kidney to reduce renal injury during shockwave lithotripsy: an in vivo study using a rabbit model. Fernández F; Domínguez A; Castaño E; Loske AM J Endourol; 2013 Jun; 27(6):774-82. PubMed ID: 23373987 [TBL] [Abstract][Full Text] [Related]
2. Using 300 Pretreatment Shock Waves in a Voltage Ramping Protocol Can Significantly Reduce Tissue Injury During Extracorporeal Shock Wave Lithotripsy. Connors BA; Evan AP; Handa RK; Blomgren PM; Johnson CD; Liu Z; Lingeman JE J Endourol; 2016 Sep; 30(9):1004-8. PubMed ID: 27307070 [TBL] [Abstract][Full Text] [Related]
3. Dual-head lithotripsy in synchronous mode: acute effect on renal function and morphology in the pig. Handa RK; McAteer JA; Willis LR; Pishchalnikov YA; Connors BA; Ying J; Lingeman JE; Evan AP BJU Int; 2007 May; 99(5):1134-42. PubMed ID: 17309558 [TBL] [Abstract][Full Text] [Related]
4. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. Evan AP; McAteer JA; Connors BA; Pishchalnikov YA; Handa RK; Blomgren P; Willis LR; Williams JC; Lingeman JE; Gao S BJU Int; 2008 Feb; 101(3):382-8. PubMed ID: 17922871 [TBL] [Abstract][Full Text] [Related]
5. Out-of-focus shockwaves: a new tissue-protecting therapy? Loske AM; Gutierrez J; Di Grazia E; Fernández F Arch Ital Urol Androl; 2004 Dec; 76(4):159-62. PubMed ID: 15693429 [TBL] [Abstract][Full Text] [Related]
6. Potential for cavitation-mediated tissue damage in shockwave lithotripsy. Matlaga BR; McAteer JA; Connors BA; Handa RK; Evan AP; Williams JC; Lingeman JE; Willis LR J Endourol; 2008 Jan; 22(1):121-6. PubMed ID: 18315482 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of adrenomedullin levels in renal parenchyma subjected to extracorporeal shockwave lithotripsy. Sarica K; Sari I; Balat A; Erbağci A; Yurtseven C; Yağci F; Karakök M Urol Res; 2003 Aug; 31(4):267-71. PubMed ID: 12830337 [TBL] [Abstract][Full Text] [Related]
8. Fetotoxicity and teratogenesis of SWL treatment in the rabbit. Frankenschmidt A; Heisler M J Endourol; 1998 Feb; 12(1):15-21. PubMed ID: 9531145 [TBL] [Abstract][Full Text] [Related]
9. Optimising an escalating shockwave amplitude treatment strategy to protect the kidney from injury during shockwave lithotripsy. Handa RK; McAteer JA; Connors BA; Liu Z; Lingeman JE; Evan AP BJU Int; 2012 Dec; 110(11 Pt C):E1041-7. PubMed ID: 22612388 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of shock wave lithotripsy injury in the pig using a narrow focal zone lithotriptor. Connors BA; McAteer JA; Evan AP; Blomgren PM; Handa RK; Johnson CD; Gao S; Pishchalnikov YA; Lingeman JE BJU Int; 2012 Nov; 110(9):1376-85. PubMed ID: 22519983 [TBL] [Abstract][Full Text] [Related]
11. A randomised controlled trial evaluating renal protective effects of selenium with vitamins A, C, E, verapamil, and losartan against extracorporeal shockwave lithotripsy-induced renal injury. El-Nahas AR; Elsaadany MM; Taha DE; Elshal AM; El-Ghar MA; Ismail AM; Elsawy EA; Saleh HH; Wafa EW; Awadalla A; Barakat TS; Sheir KZ BJU Int; 2017 Jan; 119(1):142-147. PubMed ID: 27686059 [TBL] [Abstract][Full Text] [Related]
12. Pretreatment with low-energy shock waves reduces the renal oxidative stress and inflammation caused by high-energy shock wave lithotripsy. Clark DL; Connors BA; Handa RK; Evan AP Urol Res; 2011 Dec; 39(6):437-42. PubMed ID: 21387182 [TBL] [Abstract][Full Text] [Related]