These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Ligand-stabilized conformational states of human beta(2) adrenergic receptor: insight into G-protein-coupled receptor activation. Bhattacharya S; Hall SE; Li H; Vaidehi N Biophys J; 2008 Mar; 94(6):2027-42. PubMed ID: 18065472 [TBL] [Abstract][Full Text] [Related]
3. Conformational changes in the G protein Gs induced by the β2 adrenergic receptor. Chung KY; Rasmussen SG; Liu T; Li S; DeVree BT; Chae PS; Calinski D; Kobilka BK; Woods VL; Sunahara RK Nature; 2011 Sep; 477(7366):611-5. PubMed ID: 21956331 [TBL] [Abstract][Full Text] [Related]
4. Simulations of biased agonists in the β(2) adrenergic receptor with accelerated molecular dynamics. Tikhonova IG; Selvam B; Ivetac A; Wereszczynski J; McCammon JA Biochemistry; 2013 Aug; 52(33):5593-603. PubMed ID: 23879802 [TBL] [Abstract][Full Text] [Related]
5. Modeling GPCR active state conformations: the β(2)-adrenergic receptor. Simpson LM; Wall ID; Blaney FE; Reynolds CA Proteins; 2011 May; 79(5):1441-57. PubMed ID: 21337626 [TBL] [Abstract][Full Text] [Related]
6. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors. Bhattacharya S; Hall SE; Vaidehi N J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Rasmussen SG; DeVree BT; Zou Y; Kruse AC; Chung KY; Kobilka TS; Thian FS; Chae PS; Pardon E; Calinski D; Mathiesen JM; Shah ST; Lyons JA; Caffrey M; Gellman SH; Steyaert J; Skiniotis G; Weis WI; Sunahara RK; Kobilka BK Nature; 2011 Jul; 477(7366):549-55. PubMed ID: 21772288 [TBL] [Abstract][Full Text] [Related]
8. Structural insights into human GPCR protein OA1: a computational perspective. Ghosh A; Sonavane U; Andhirka SK; Aradhyam GK; Joshi R J Mol Model; 2012 May; 18(5):2117-33. PubMed ID: 21938455 [TBL] [Abstract][Full Text] [Related]
9. Time-resolved cryo-EM of G-protein activation by a GPCR. Papasergi-Scott MM; Pérez-Hernández G; Batebi H; Gao Y; Eskici G; Seven AB; Panova O; Hilger D; Casiraghi M; He F; Maul L; Gmeiner P; Kobilka BK; Hildebrand PW; Skiniotis G Nature; 2024 May; 629(8014):1182-1191. PubMed ID: 38480881 [TBL] [Abstract][Full Text] [Related]
10. Microsecond Molecular Dynamics Simulations Provide Insight into the Allosteric Mechanism of the Gs Protein Uncoupling from the β2 Adrenergic Receptor. Sun X; Ågren H; Tu Y J Phys Chem B; 2014 Dec; 118(51):14737-44. PubMed ID: 25453446 [TBL] [Abstract][Full Text] [Related]
11. Modeling of ligand binding to G protein coupled receptors: cannabinoid CB1, CB2 and adrenergic β 2 AR. Latek D; Kolinski M; Ghoshdastider U; Debinski A; Bombolewski R; Plazinska A; Jozwiak K; Filipek S J Mol Model; 2011 Sep; 17(9):2353-66. PubMed ID: 21365223 [TBL] [Abstract][Full Text] [Related]
12. Detection of G protein-selective G protein-coupled receptor (GPCR) conformations in live cells. Malik RU; Ritt M; DeVree BT; Neubig RR; Sunahara RK; Sivaramakrishnan S J Biol Chem; 2013 Jun; 288(24):17167-78. PubMed ID: 23629648 [TBL] [Abstract][Full Text] [Related]
13. Computational study on the different ligands induced conformation change of β2 adrenergic receptor-Gs protein complex. Bai Q; Zhang Y; Ban Y; Liu H; Yao X PLoS One; 2013; 8(7):e68138. PubMed ID: 23922653 [TBL] [Abstract][Full Text] [Related]
14. Identification of two distinct inactive conformations of the beta2-adrenergic receptor reconciles structural and biochemical observations. Dror RO; Arlow DH; Borhani DW; Jensen MØ; Piana S; Shaw DE Proc Natl Acad Sci U S A; 2009 Mar; 106(12):4689-94. PubMed ID: 19258456 [TBL] [Abstract][Full Text] [Related]
15. Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery. Huber T; Menon S; Sakmar TP Biochemistry; 2008 Oct; 47(42):11013-23. PubMed ID: 18821775 [TBL] [Abstract][Full Text] [Related]
16. Insight into partial agonism by observing multiple equilibria for ligand-bound and G Solt AS; Bostock MJ; Shrestha B; Kumar P; Warne T; Tate CG; Nietlispach D Nat Commun; 2017 Nov; 8(1):1795. PubMed ID: 29176642 [TBL] [Abstract][Full Text] [Related]
17. Energy Landscapes Reveal Agonist Control of G Protein-Coupled Receptor Activation via Microswitches. Fleetwood O; Matricon P; Carlsson J; Delemotte L Biochemistry; 2020 Feb; 59(7):880-891. PubMed ID: 31999436 [TBL] [Abstract][Full Text] [Related]
18. Advances in methods to characterize ligand-induced ionic lock and rotamer toggle molecular switch in G protein-coupled receptors. Xie XQ; Chowdhury A Methods Enzymol; 2013; 520():153-74. PubMed ID: 23332699 [TBL] [Abstract][Full Text] [Related]
19. Structural Elements in the Gαs and Gαq C Termini That Mediate Selective G Protein-coupled Receptor (GPCR) Signaling. Semack A; Sandhu M; Malik RU; Vaidehi N; Sivaramakrishnan S J Biol Chem; 2016 Aug; 291(34):17929-40. PubMed ID: 27330078 [TBL] [Abstract][Full Text] [Related]
20. Functional differences between full and partial agonists: evidence for ligand-specific receptor conformations. Seifert R; Wenzel-Seifert K; Gether U; Kobilka BK J Pharmacol Exp Ther; 2001 Jun; 297(3):1218-26. PubMed ID: 11356949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]