BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23374188)

  • 1. Rhodopsin-lipid interactions studied by NMR.
    Soubias O; Gawrisch K
    Methods Enzymol; 2013; 522():209-27. PubMed ID: 23374188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional reconstitution of rhodopsin into tubular lipid bilayers supported by nanoporous media.
    Soubias O; Polozov IV; Teague WE; Yeliseev AA; Gawrisch K
    Biochemistry; 2006 Dec; 45(51):15583-90. PubMed ID: 17176079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multinuclear NMR studies of single lipid bilayers supported in cylindrical aluminum oxide nanopores.
    Gaede HC; Luckett KM; Polozov IV; Gawrisch K
    Langmuir; 2004 Aug; 20(18):7711-9. PubMed ID: 15323523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic deformation of membrane bilayers probed by deuterium NMR relaxation.
    Brown MF; Thurmond RL; Dodd SW; Otten D; Beyer K
    J Am Chem Soc; 2002 Jul; 124(28):8471-84. PubMed ID: 12105929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids.
    Botelho AV; Gibson NJ; Thurmond RL; Wang Y; Brown MF
    Biochemistry; 2002 May; 41(20):6354-68. PubMed ID: 12009897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy.
    Alves ID; Salgado GF; Salamon Z; Brown MF; Tollin G; Hruby VJ
    Biophys J; 2005 Jan; 88(1):198-210. PubMed ID: 15501933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic properties of polyunsaturated phosphatidylethanolamines influence rhodopsin function.
    Teague WE; Soubias O; Petrache H; Fuller N; Hines KG; Rand RP; Gawrisch K
    Faraday Discuss; 2013; 161():383-95; discussion 419-59. PubMed ID: 23805751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures.
    Huster D; Arnold K; Gawrisch K
    Biochemistry; 1998 Dec; 37(49):17299-308. PubMed ID: 9860844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores.
    Chekmenev EY; Hu J; Gor'kov PL; Brey WW; Cross TA; Ruuge A; Smirnov AI
    J Magn Reson; 2005 Apr; 173(2):322-7. PubMed ID: 15780925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing specific lipid-protein interaction by saturation transfer difference NMR spectroscopy.
    Soubias O; Gawrisch K
    J Am Chem Soc; 2005 Sep; 127(38):13110-1. PubMed ID: 16173715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of docosahexaenoic acid-containing phospholipid bilayers as studied by (2)H NMR and molecular dynamics simulations.
    Huber T; Rajamoorthi K; Kurze VF; Beyer K; Brown MF
    J Am Chem Soc; 2002 Jan; 124(2):298-309. PubMed ID: 11782182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodopsin/lipid hydrophobic matching-rhodopsin oligomerization and function.
    Soubias O; Teague WE; Hines KG; Gawrisch K
    Biophys J; 2015 Mar; 108(5):1125-32. PubMed ID: 25762324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid-rhodopsin hydrophobic mismatch alters rhodopsin helical content.
    Soubias O; Niu SL; Mitchell DC; Gawrisch K
    J Am Chem Soc; 2008 Sep; 130(37):12465-71. PubMed ID: 18712874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential structural changes in rhodopsin occurring upon photoactivation.
    Kimata N; Pope A; Rashid D; Reeves PJ; Smith SO
    Methods Mol Biol; 2015; 1271():159-71. PubMed ID: 25697523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the lipid matrix for structure and function of the GPCR rhodopsin.
    Soubias O; Gawrisch K
    Biochim Biophys Acta; 2012 Feb; 1818(2):234-40. PubMed ID: 21924236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural properties of docosahexaenoyl phospholipid bilayers investigated by solid-state 2H NMR spectroscopy.
    Petrache HI; Salmon A; Brown MF
    J Am Chem Soc; 2001 Dec; 123(50):12611-22. PubMed ID: 11741426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR.
    Eddy MT; Su Y; Silvers R; Andreas L; Clark L; Wagner G; Pintacuda G; Emsley L; Griffin RG
    J Biomol NMR; 2015 Apr; 61(3-4):299-310. PubMed ID: 25634301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon resonance spectroscopy studies of membrane proteins: transducin binding and activation by rhodopsin monitored in thin membrane films.
    Salamon Z; Wang Y; Soulages JL; Brown MF; Tollin G
    Biophys J; 1996 Jul; 71(1):283-94. PubMed ID: 8804611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples.
    Das N; Murray DT; Cross TA
    Nat Protoc; 2013 Nov; 8(11):2256-70. PubMed ID: 24157546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic deformation and area per lipid of membranes: atomistic view from solid-state deuterium NMR spectroscopy.
    Kinnun JJ; Mallikarjunaiah KJ; Petrache HI; Brown MF
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt B):246-59. PubMed ID: 24946141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.