These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 23374367)
1. Retention models and interaction mechanisms of acetone and other carbonyl-containing molecules with amylose tris[(S)-α-methylbenzylcarbamate] sorbent. Tsui HW; Hwang MY; Ling L; Franses EI; Wang NH J Chromatogr A; 2013 Mar; 1279():36-48. PubMed ID: 23374367 [TBL] [Abstract][Full Text] [Related]
2. Effect of alcohol aggregation on the retention factors of chiral solutes with an amylose-based sorbent: modeling and implications for the adsorption mechanism. Tsui HW; Franses EI; Wang NH J Chromatogr A; 2014 Feb; 1328():52-65. PubMed ID: 24444802 [TBL] [Abstract][Full Text] [Related]
3. Elucidation of adsorption mechanisms of solvent molecules with distinct functional groups on amylose tris(3,5-dimethylphenylcarbamate)-based sorbent. Wu SG; Lin AY; Hsieh HY; Tsui HW J Chromatogr A; 2016 Aug; 1460():123-34. PubMed ID: 27432786 [TBL] [Abstract][Full Text] [Related]
4. Solvent effects on the retention mechanisms of an amylose-based sorbent. Tsui HW; Cheng KT; Lin AY; Chen SC; Hung YL; Chou PY J Chromatogr A; 2018 Jun; 1556():64-72. PubMed ID: 29731289 [TBL] [Abstract][Full Text] [Related]
5. Effect of solvent composition on the van't Hoff enthalpic curve using amylose 3,5-dichlorophenylcarbamate-based sorbent. Lin AY; Cheng KT; Chen SC; Tsui HW J Chromatogr A; 2017 Sep; 1515():179-186. PubMed ID: 28803646 [TBL] [Abstract][Full Text] [Related]
6. Retention models and interaction mechanisms of benzene and other aromatic molecules with an amylose-based sorbent. Hsieh HY; Wu SG; Tsui HW J Chromatogr A; 2017 Apr; 1494():55-64. PubMed ID: 28320536 [TBL] [Abstract][Full Text] [Related]
7. Chiral recognition mechanism of acyloin-containing chiral solutes by amylose tris[(S)-α-methylbenzylcarbamate]. Tsui HW; Wang NH; Franses EI J Phys Chem B; 2013 Aug; 117(31):9203-16. PubMed ID: 23848510 [TBL] [Abstract][Full Text] [Related]
8. Effect of 2-propanol content on solute retention mechanisms determined using amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase under normal- and reversed-phase conditions. Tsui HW; Zhang HL; Hsieh CH J Chromatogr A; 2021 Aug; 1650():462226. PubMed ID: 34087518 [TBL] [Abstract][Full Text] [Related]
9. Elucidation of retention behaviors in reversed-phase liquid chromatography as a function of mobile phase composition. Tsui HW; Kuo CH; Huang YC J Chromatogr A; 2019 Jun; 1595():127-135. PubMed ID: 30837162 [TBL] [Abstract][Full Text] [Related]
10. Experimental and computational studies of enantioseparation of structurally similar chiral compounds on amylose tris(3,5-dimethylphenylcarbamate). Kasat RB; Franses EI; Wang NH Chirality; 2010 Jun; 22(6):565-79. PubMed ID: 19885823 [TBL] [Abstract][Full Text] [Related]
11. Retention modeling and adsorption mechanisms in reversed-phase liquid chromatography. Tsui HW; Lin SZ; Hsu YC; Dai FJ J Chromatogr A; 2022 Jan; 1662():462736. PubMed ID: 34923304 [TBL] [Abstract][Full Text] [Related]
12. Infrared spectroscopy and molecular simulations of a polymeric sorbent and its enantioselective interactions with benzoin enantiomers. Tsui HW; Willing JN; Kasat RB; Wang NH; Franses EI J Phys Chem B; 2011 Nov; 115(44):12785-800. PubMed ID: 21942429 [TBL] [Abstract][Full Text] [Related]
13. Experimental probing and modeling of key sorbent-solute interactions of norephedrine enantiomers with polysaccharide-based chiral stationary phases. Kasat RB; Wang NH; Franses EI J Chromatogr A; 2008 May; 1190(1-2):110-9. PubMed ID: 18387616 [TBL] [Abstract][Full Text] [Related]
14. Effect of the organic modifier concentration on the retention in reversed-phase liquid chromatography I. General semi-thermodynamic treatment for adsorption and partition mechanisms. Nikitas P; Pappa-Louisi A; Agrafiotou P J Chromatogr A; 2002 Feb; 946(1-2):9-32. PubMed ID: 11873986 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamic and kinetic study of chiral separations of coumarin-based anticoagulants on derivatized amylose stationary phase. Gebreyohannes KG; McGuffin VL J Chromatogr A; 2010 Sep; 1217(38):5901-12. PubMed ID: 20719321 [TBL] [Abstract][Full Text] [Related]
16. Liquid chromatographic separation and thermodynamic investigation of stereoisomers of darunavir on Chiralpak AD-H column. Rao RN; Kumar KN; Kumar BS J Sep Sci; 2012 Oct; 35(20):2671-7. PubMed ID: 22945877 [TBL] [Abstract][Full Text] [Related]
17. Studies on the retention mechanism of solutes in hydrophilic interaction chromatography using stoichiometric displacement theory I. The linear relationship of lgk' vs. lg[H Wang F; Yang F; Tian Y; Liu J; Shen J; Bai Q Talanta; 2018 Jan; 176():499-508. PubMed ID: 28917782 [TBL] [Abstract][Full Text] [Related]
18. Insights into the retention mechanism on an octadecylsiloxane-bonded silica stationary phase (HyPURITY C18) in reversed-phase liquid chromatography. Poole CF; Kiridena W; DeKay C; Koziol WW; Rosencrans RD J Chromatogr A; 2006 May; 1115(1-2):133-41. PubMed ID: 16564531 [TBL] [Abstract][Full Text] [Related]
19. Prediction of retention in reversed-phase liquid chromatography by means of the polarity parameter model. Lázaro E; Izquierdo P; Ràfols C; Rosés M; Bosch E J Chromatogr A; 2009 Jul; 1216(27):5214-27. PubMed ID: 19493533 [TBL] [Abstract][Full Text] [Related]
20. Effect of temperature on competitive adsorption of the solute and the organic solvent in reversed-phase liquid chromatography. Poplewska I; Piatkowski W; Antos D J Chromatogr A; 2006 Jan; 1103(2):284-95. PubMed ID: 16343511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]