BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 23374721)

  • 1. Sphingolipids in lipid microdomains and obesity.
    Mitsutake S; Igarashi Y
    Vitam Horm; 2013; 91():271-84. PubMed ID: 23374721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic modification of sphingomyelin in lipid microdomains controls development of obesity, fatty liver, and type 2 diabetes.
    Mitsutake S; Zama K; Yokota H; Yoshida T; Tanaka M; Mitsui M; Ikawa M; Okabe M; Tanaka Y; Yamashita T; Takemoto H; Okazaki T; Watanabe K; Igarashi Y
    J Biol Chem; 2011 Aug; 286(32):28544-55. PubMed ID: 21669879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Pathogenesis of lipid storage diseases].
    Bandorowicz-Pikuła J; Pikuła S; Tylki-Szymańska A
    Postepy Biochem; 2011; 57(2):158-67. PubMed ID: 21913416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sphingolipids: membrane microdomains in brain development, function and neurological diseases.
    Olsen ASB; Færgeman NJ
    Open Biol; 2017 May; 7(5):. PubMed ID: 28566300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Update on lipid membrane microdomains.
    Schmitz G; Grandl M
    Curr Opin Clin Nutr Metab Care; 2008 Mar; 11(2):106-12. PubMed ID: 18301084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Cholesterol and lipid rafts in the biological membranes. Role in the release, reception and ion channel functions].
    Petrov AM; Zefirov AL
    Usp Fiziol Nauk; 2013; 44(1):17-38. PubMed ID: 23662472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The differential protein and lipid compositions of noncaveolar lipid microdomains and caveolae.
    Yao Y; Hong S; Zhou H; Yuan T; Zeng R; Liao K
    Cell Res; 2009 Apr; 19(4):497-506. PubMed ID: 19255590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ARAP2 promotes GLUT1-mediated basal glucose uptake through regulation of sphingolipid metabolism.
    Chaudhari A; Håversen L; Mobini R; Andersson L; Ståhlman M; Lu E; Rutberg M; Fogelstrand P; Ekroos K; Mardinoglu A; Levin M; Perkins R; Borén J
    Biochim Biophys Acta; 2016 Nov; 1861(11):1643-1651. PubMed ID: 27476102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of lipid-composition changes in plasma membrane microdomains.
    Ogiso H; Taniguchi M; Okazaki T
    J Lipid Res; 2015 Aug; 56(8):1594-605. PubMed ID: 26116739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nutritional significance of lipid rafts.
    Yaqoob P
    Annu Rev Nutr; 2009; 29():257-82. PubMed ID: 19400697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphingolipid levels crucially modulate lateral microdomain organization of plasma membrane in living yeast.
    Vecer J; Vesela P; Malinsky J; Herman P
    FEBS Lett; 2014 Jan; 588(3):443-9. PubMed ID: 24333335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after Fcepsilon receptor I aggregation.
    Kovárová M; Tolar P; Arudchandran R; Dráberová L; Rivera J; Dráber P
    Mol Cell Biol; 2001 Dec; 21(24):8318-28. PubMed ID: 11713268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of AnxA6 with isolated and artificial lipid microdomains; importance of lipid composition and calcium content.
    Domon MM; Besson F; Tylki-Szymanska A; Bandorowicz-Pikula J; Pikula S
    Mol Biosyst; 2013 Apr; 9(4):668-76. PubMed ID: 23360953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid-dependent surface transport of the proton pumping ATPase: a model to study plasma membrane biogenesis in yeast.
    Toulmay A; Schneiter R
    Biochimie; 2007 Feb; 89(2):249-54. PubMed ID: 16938383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphingolipids: major regulators of lipid metabolism.
    Worgall TS
    Curr Opin Clin Nutr Metab Care; 2007 Mar; 10(2):149-55. PubMed ID: 17285002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid microdomains, lipid translocation and the organization of intracellular membrane transport (Review).
    Holthuis JC; van Meer G; Huitema K
    Mol Membr Biol; 2003; 20(3):231-41. PubMed ID: 12893531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting of ion channels to membrane microdomains: localization of KV channels to lipid rafts.
    Martens JR; O'Connell K; Tamkun M
    Trends Pharmacol Sci; 2004 Jan; 25(1):16-21. PubMed ID: 14723974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring the distribution and dynamics of signaling microdomains in living cells with lipid-specific probes.
    Hullin-Matsuda F; Kobayashi T
    Cell Mol Life Sci; 2007 Oct; 64(19-20):2492-504. PubMed ID: 17876518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane microdomains, caveolae, and caveolar endocytosis of sphingolipids.
    Cheng ZJ; Singh RD; Marks DL; Pagano RE
    Mol Membr Biol; 2006; 23(1):101-10. PubMed ID: 16611585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol and sphingolipids as lipid organizers of the immune cells' plasma membrane: their impact on the functions of MHC molecules, effector T-lymphocytes and T-cell death.
    Gombos I; Kiss E; Detre C; László G; Matkó J
    Immunol Lett; 2006 Apr; 104(1-2):59-69. PubMed ID: 16388855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.