These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

511 related articles for article (PubMed ID: 23375520)

  • 21. Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics.
    Zampieri S; Mammucari C; Romanello V; Barberi L; Pietrangelo L; Fusella A; Mosole S; Gherardi G; Höfer C; Löfler S; Sarabon N; Cvecka J; Krenn M; Carraro U; Kern H; Protasi F; Musarò A; Sandri M; Rizzuto R
    Physiol Rep; 2016 Dec; 4(24):. PubMed ID: 28039397
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular mechanisms in aging and current strategies to counteract sarcopenia.
    Sakuma K; Yamaguchi A
    Curr Aging Sci; 2010 Jul; 3(2):90-101. PubMed ID: 20158492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondria Initiate and Regulate Sarcopenia.
    Alway SE; Mohamed JS; Myers MJ
    Exerc Sport Sci Rev; 2017 Apr; 45(2):58-69. PubMed ID: 28098577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Zebrafish as a Human Muscle Model for Studying Age-Dependent Sarcopenia and Frailty.
    Aranda-Martínez P; Sayed RKA; Fernández-Martínez J; Ramírez-Casas Y; Yang Y; Escames G; Acuña-Castroviejo D
    Int J Mol Sci; 2024 Jun; 25(11):. PubMed ID: 38892357
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tetra-linoleoyl cardiolipin depletion plays a major role in the pathogenesis of sarcopenia.
    Semba RD; Moaddel R; Zhang P; Ramsden CE; Ferrucci L
    Med Hypotheses; 2019 Jun; 127():142-149. PubMed ID: 31088638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atrogin-1, MuRF-1, and sarcopenia.
    Gumucio JP; Mendias CL
    Endocrine; 2013 Feb; 43(1):12-21. PubMed ID: 22815045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training.
    Konopka AR; Suer MK; Wolff CA; Harber MP
    J Gerontol A Biol Sci Med Sci; 2014 Apr; 69(4):371-8. PubMed ID: 23873965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dietary fat modifies mitochondrial and plasma membrane apoptotic signaling in skeletal muscle of calorie-restricted mice.
    López-Domínguez JA; Khraiwesh H; González-Reyes JA; López-Lluch G; Navas P; Ramsey JJ; de Cabo R; Burón MI; Villalba JM
    Age (Dordr); 2013 Dec; 35(6):2027-44. PubMed ID: 23179253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human skeletal muscle aging and the oxidative system: cellular events.
    Rossi P; Marzani B; Giardina S; Negro M; Marzatico F
    Curr Aging Sci; 2008 Dec; 1(3):182-91. PubMed ID: 20021391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The physiopathologic role of oxidative stress in skeletal muscle.
    Scicchitano BM; Pelosi L; Sica G; Musarò A
    Mech Ageing Dev; 2018 Mar; 170():37-44. PubMed ID: 28851603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of IGF-1 isoforms on muscle growth and sarcopenia.
    Ascenzi F; Barberi L; Dobrowolny G; Villa Nova Bacurau A; Nicoletti C; Rizzuto E; Rosenthal N; Scicchitano BM; Musarò A
    Aging Cell; 2019 Jun; 18(3):e12954. PubMed ID: 30953403
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidative stress, molecular inflammation and sarcopenia.
    Meng SJ; Yu LJ
    Int J Mol Sci; 2010 Apr; 11(4):1509-26. PubMed ID: 20480032
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Caloric restriction: implications for sarcopenia and potential mechanisms.
    Xie WQ; Xiao WF; Tang K; Wu YX; Hu PW; Li YS; Duan Y; Lv S
    Aging (Albany NY); 2020 Nov; 12(23):24441-24452. PubMed ID: 33226962
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sarcopenia and Muscle Aging: A Brief Overview.
    Dao T; Green AE; Kim YA; Bae SJ; Ha KT; Gariani K; Lee MR; Menzies KJ; Ryu D
    Endocrinol Metab (Seoul); 2020 Dec; 35(4):716-732. PubMed ID: 33397034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pathophysiology and mechanisms of primary sarcopenia (Review).
    Nishikawa H; Fukunishi S; Asai A; Yokohama K; Nishiguchi S; Higuchi K
    Int J Mol Med; 2021 Aug; 48(2):. PubMed ID: 34184088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Age-related muscle dysfunction.
    Thompson LV
    Exp Gerontol; 2009; 44(1-2):106-11. PubMed ID: 18657920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Redox Signaling and Sarcopenia: Searching for the Primary Suspect.
    Foreman NA; Hesse AS; Ji LL
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445751
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regenerative decline of stem cells in sarcopenia.
    Sousa-Victor P; Muñoz-Cánoves P
    Mol Aspects Med; 2016 Aug; 50():109-17. PubMed ID: 26921790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The 5,7-Dimethoxyflavone Suppresses Sarcopenia by Regulating Protein Turnover and Mitochondria Biogenesis-Related Pathways.
    Kim C; Hwang JK
    Nutrients; 2020 Apr; 12(4):. PubMed ID: 32295051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overexpression of the mitochondrial T3 receptor induces skeletal muscle atrophy during aging.
    Casas F; Pessemesse L; Grandemange S; Seyer P; Baris O; Gueguen N; Ramonatxo C; Perrin F; Fouret G; Lepourry L; Cabello G; Wrutniak-Cabello C
    PLoS One; 2009 May; 4(5):e5631. PubMed ID: 19462004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.