BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 23375820)

  • 1. A microbial fuel cell driven capacitive deionization technology for removal of low level dissolved ions.
    Feng C; Hou CH; Chen S; Yu CP
    Chemosphere; 2013 Apr; 91(5):623-8. PubMed ID: 23375820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capacitive deionization for wastewater treatment: Opportunities and challenges.
    Kalfa A; Shapira B; Shopin A; Cohen I; Avraham E; Aurbach D
    Chemosphere; 2020 Feb; 241():125003. PubMed ID: 31590019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial electro deionization for waste water treatment - A critical review on methods, applications and mechanism.
    Akash S; Sivaprakash B; Rajamohan N
    Environ Res; 2022 Nov; 214(Pt 3):113999. PubMed ID: 35932837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of low-level Cu(II) wastewater and regeneration through a novel capacitive deionization-electrodeionization (CDI-EDI) technology.
    Zhao C; Zhang L; Ge R; Zhang A; Zhang C; Chen X
    Chemosphere; 2019 Feb; 217():763-772. PubMed ID: 30448756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the COD removal, electricity generation, and bacterial communities in microbial fuel cells treating molasses wastewater.
    Lee YY; Kim TG; Cho KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Nov; 51(13):1131-8. PubMed ID: 27428492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the application niche of microbial fuel cells in a cheese wastewater treatment process.
    Kelly PT; He Z
    Bioresour Technol; 2014 Apr; 157():154-60. PubMed ID: 24549237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative performances of microbial capacitive deionization cell and microbial fuel cell fed with produced water from the Bakken shale.
    Shrestha N; Chilkoor G; Wilder J; Ren ZJ; Gadhamshetty V
    Bioelectrochemistry; 2018 Jun; 121():56-64. PubMed ID: 29413865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment.
    Zhuang L; Zheng Y; Zhou S; Yuan Y; Yuan H; Chen Y
    Bioresour Technol; 2012 Feb; 106():82-8. PubMed ID: 22197329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization.
    Huang SY; Fan CS; Hou CH
    J Hazard Mater; 2014 Aug; 278():8-15. PubMed ID: 24937658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performances of microbial fuel cells fed with rejected wastewater from BioCH4 and BioH2 processes treating molasses wastewater.
    Lee YY; Kim TG; Cho KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(4):318-24. PubMed ID: 26756976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells.
    Kim KY; Yang W; Logan BE
    Water Res; 2015 Sep; 80():41-6. PubMed ID: 25996751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined photoelectrocatalytic microbial fuel cell (PEC-MFC) degradation of refractory organic pollutants and in-situ electricity utilization.
    Zhang M; Wang Y; Liang P; Zhao X; Liang M; Zhou B
    Chemosphere; 2019 Jan; 214():669-678. PubMed ID: 30292049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of a recently emerged technology: Constructed wetland--Microbial fuel cells.
    Doherty L; Zhao Y; Zhao X; Hu Y; Hao X; Xu L; Liu R
    Water Res; 2015 Nov; 85():38-45. PubMed ID: 26295937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Operation of a horizontal subsurface flow constructed wetland--microbial fuel cell treating wastewater under different organic loading rates.
    Villaseñor J; Capilla P; Rodrigo MA; Cañizares P; Fernández FJ
    Water Res; 2013 Nov; 47(17):6731-8. PubMed ID: 24074815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of air-cathode stacked microbial fuel cells systems for wastewater treatment and electricity production.
    Estrada-Arriaga EB; Guillen-Alonso Y; Morales-Morales C; García-Sánchez L; Bahena-Bahena EO; Guadarrama-Pérez O; Loyola-Morales F
    Water Sci Technol; 2017 Jul; 76(3-4):683-693. PubMed ID: 28759450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane capacitive deionization for low-salinity desalination in the reclamation of domestic wastewater effluents.
    Lee M; Fan CS; Chen YW; Chang KC; Chiueh PT; Hou CH
    Chemosphere; 2019 Nov; 235():413-422. PubMed ID: 31272001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of electricity during wastewater treatment using a single chamber microbial fuel cell.
    Liu H; Ramnarayanan R; Logan BE
    Environ Sci Technol; 2004 Apr; 38(7):2281-5. PubMed ID: 15112835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving electricity production in tubular microbial fuel cells through optimizing the anolyte flow with spiral spacers.
    Zhang F; Ge Z; Grimaud J; Hurst J; He Z
    Bioresour Technol; 2013 Apr; 134():251-6. PubMed ID: 23500582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment.
    Ren L; Ahn Y; Logan BE
    Environ Sci Technol; 2014 Apr; 48(7):4199-206. PubMed ID: 24568605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electricity production and sludge reduction by integrating microbial fuel cells in anoxic-oxic process.
    Xiao B; Luo M; Wang X; Li Z; Chen H; Liu J; Guo X
    Waste Manag; 2017 Nov; 69():346-352. PubMed ID: 28778783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.