These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 2337602)

  • 1. Pathways of the rise and decay of the M photointermediate(s) of bacteriorhodopsin.
    Váró G; Lanyi JK
    Biochemistry; 1990 Mar; 29(9):2241-50. PubMed ID: 2337602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoreaction of the N intermediate of bacteriorhodopsin, and its relationship to the decay kinetics of the M intermediate.
    Brown LS; Zimányi L; Needleman R; Ottolenghi M; Lanyi JK
    Biochemistry; 1993 Aug; 32(30):7679-85. PubMed ID: 8347578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interconversions of the M, N, and O intermediates in the bacteriorhodopsin photocycle.
    Váró G; Duschl A; Lanyi JK
    Biochemistry; 1990 Apr; 29(15):3798-804. PubMed ID: 2160268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distortions in the photocycle of bacteriorhodopsin at moderate dehydration.
    Váró G; Lanyi JK
    Biophys J; 1991 Feb; 59(2):313-22. PubMed ID: 2009355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of detergent environments on the photocycle of purified monomeric bacteriorhodopsin.
    Milder SJ; Thorgeirsson TE; Miercke LJ; Stroud RM; Kliger DS
    Biochemistry; 1991 Feb; 30(7):1751-61. PubMed ID: 1993191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of the N intermediate and the two pathways of recovery of the ground-state of bacteriorhodopsin.
    Tokaji Z; Dancsházy Z
    FEBS Lett; 1992 Oct; 311(3):267-70. PubMed ID: 1397327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Asp-96----Asn, Asp-85----Asn, and Arg-82----Gln single-site substitutions on the photocycle of bacteriorhodopsin.
    Thorgeirsson TE; Milder SJ; Miercke LJ; Betlach MC; Shand RF; Stroud RM; Kliger DS
    Biochemistry; 1991 Sep; 30(38):9133-42. PubMed ID: 1892824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient spectroscopy of bacterial rhodopsins with an optical multichannel analyzer. 1. Comparison of the photocycles of bacteriorhodopsin and halorhodopsin.
    Zimányi L; Keszthelyi L; Lanyi JK
    Biochemistry; 1989 Jun; 28(12):5165-72. PubMed ID: 2765529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the 9-methyl group of the retinal on the photocycle of bacteriorhodopsin studied by time-resolved rapid-scan and static low-temperature Fourier transform infrared difference spectroscopy.
    Weidlich O; Friedman N; Sheves M; Siebert F
    Biochemistry; 1995 Oct; 34(41):13502-10. PubMed ID: 7577939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interrelations of M-intermediates in bacteriorhodopsin photocycle.
    Drachev LA; Kaulen AD; Komrakov AYu
    FEBS Lett; 1992 Nov; 313(3):248-50. PubMed ID: 1446744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoisomerization of the chromophore in bacteriorhodopsin during the proton pumping photocycle.
    Mowery PC; Stoeckenius W
    Biochemistry; 1981 Apr; 20(8):2302-6. PubMed ID: 7236601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathway of proton uptake in the bacteriorhodopsin photocycle.
    Zimányi L; Cao Y; Needleman R; Ottolenghi M; Lanyi JK
    Biochemistry; 1993 Aug; 32(30):7669-78. PubMed ID: 8347577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and spectroscopic evidence for an irreversible step between deprotonation and reprotonation of the Schiff base in the bacteriorhodopsin photocycle.
    Váró G; Lanyi JK
    Biochemistry; 1991 May; 30(20):5008-15. PubMed ID: 1645187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-like intermediate in the photocycle of the acid purple form of bacteriorhodopsin.
    Tokaji Z; Dér A; Keszthelyi L
    FEBS Lett; 1997 Mar; 405(1):125-7. PubMed ID: 9094439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoreaction of bacteriorhodopsin at high pH: origins of the slow decay component of M.
    Fukuda K; Kouyama T
    Biochemistry; 1992 Dec; 31(47):11740-7. PubMed ID: 1445908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacteriorhodopsin photocycle kinetics analyzed by the maximum entropy method.
    Lukács A; Papp E
    J Photochem Photobiol B; 2004 Dec; 77(1-3):1-16. PubMed ID: 15542357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time and pH dependence of the L-to-M transition in the photocycle of bacteriorhodopsin and its correlation with proton release.
    Althaus T; Stockburger M
    Biochemistry; 1998 Mar; 37(9):2807-17. PubMed ID: 9485432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic model of bacteriorhodopsin photocycle: pathway from M state to bR.
    Chernavskii DS; Chizhov IV; Lozier RH; Murina TM; Prokhorov AM; Zubov BV
    Photochem Photobiol; 1989 May; 49(5):649-53. PubMed ID: 2756001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Raman and optical transient studies on the light-induced proton pump of bacteriorhodopsin reveal parallel photocycles.
    Eisfeld W; Pusch C; Diller R; Lohrmann R; Stockburger M
    Biochemistry; 1993 Jul; 32(28):7196-215. PubMed ID: 8343509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemistry of a dual-bacteriorhodopsin system in Haloarcula marismortui: HmbRI and HmbRII.
    Tsai FK; Fu HY; Yang CS; Chu LK
    J Phys Chem B; 2014 Jul; 118(26):7290-301. PubMed ID: 24941450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.