These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23376188)

  • 1. How conformational changes can affect catalysis, inhibition and drug resistance of enzymes with induced-fit binding mechanism such as the HIV-1 protease.
    Weikl TR; Hemmateenejad B
    Biochim Biophys Acta; 2013 May; 1834(5):867-73. PubMed ID: 23376188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating a relationship between conformational sampling and drug resistance in HIV-1 protease.
    de Vera IM; Smith AN; Dancel MC; Huang X; Dunn BM; Fanucci GE
    Biochemistry; 2013 May; 52(19):3278-88. PubMed ID: 23566104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance.
    Muzammil S; Ross P; Freire E
    Biochemistry; 2003 Jan; 42(3):631-8. PubMed ID: 12534275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of conformational fluctuations in the enzymatic reaction of HIV-1 protease.
    Piana S; Carloni P; Parrinello M
    J Mol Biol; 2002 May; 319(2):567-83. PubMed ID: 12051929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accessory mutations balance the marginal stability of the HIV-1 protease in drug resistance.
    Weikl TR; Hemmateenejad B
    Proteins; 2020 Mar; 88(3):476-484. PubMed ID: 31599014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining mutations in HIV-1 protease to understand mechanisms of resistance.
    Mahalingam B; Boross P; Wang YF; Louis JM; Fischer CC; Tozser J; Harrison RW; Weber IT
    Proteins; 2002 Jul; 48(1):107-16. PubMed ID: 12012342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease.
    Vega S; Kang LW; Velazquez-Campoy A; Kiso Y; Amzel LM; Freire E
    Proteins; 2004 May; 55(3):594-602. PubMed ID: 15103623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study.
    Leonis G; Steinbrecher T; Papadopoulos MG
    J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative studies on inhibitors of HIV protease: a target for drug design.
    Jayaraman S; Shah K
    In Silico Biol; 2008; 8(5-6):427-47. PubMed ID: 19374129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of inhibitor-resistant natural mutant forms of HIV-1 protease probed by pre-steady state kinetic analysis.
    Zakharova MY; Kuznetsova AA; Kaliberda EN; Dronina MA; Kolesnikov AV; Kozyr AV; Smirnov IV; Rumsh LD; Fedorova OS; Knorre DG; Gabibov AG; Kuznetsov NA
    Biochimie; 2017 Nov; 142():125-134. PubMed ID: 28843613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into a mutation-assisted lateral drug escape mechanism from the HIV-1 protease active site.
    Sadiq SK; Wan S; Coveney PV
    Biochemistry; 2007 Dec; 46(51):14865-77. PubMed ID: 18052195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of an in vivo HIV-1 protease mutant in complex with saquinavir: insights into the mechanisms of drug resistance.
    Hong L; Zhang XC; Hartsuck JA; Tang J
    Protein Sci; 2000 Oct; 9(10):1898-904. PubMed ID: 11106162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revertant mutation V48G alters conformational dynamics of highly drug resistant HIV protease PRS17.
    Burnaman SH; Kneller DW; Wang YF; Kovalevsky A; Weber IT
    J Mol Graph Model; 2021 Nov; 108():108005. PubMed ID: 34419931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HIV-1 protease substrate-groove: Role in substrate recognition and inhibitor resistance.
    Laco GS
    Biochimie; 2015 Nov; 118():90-103. PubMed ID: 26300060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New active HIV-1 protease inhibitors derived from 3-hexanol: conformation study of the free inhibitors in crystalline state and in complex with the enzyme.
    Ziółkowska NE; Bujacz A; Randad RS; Erickson JW; Skálová T; Hašek J; Bujacz G
    Chem Biol Drug Des; 2012 May; 79(5):798-809. PubMed ID: 22296826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic sliding: a possible mechanism for drug resistance in human immunodeficiency virus type 1 protease.
    Foulkes-Murzycki JE; Scott WR; Schiffer CA
    Structure; 2007 Feb; 15(2):225-33. PubMed ID: 17292840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resilience to resistance of HIV-1 protease inhibitors: profile of darunavir.
    Lefebvre E; Schiffer CA
    AIDS Rev; 2008; 10(3):131-42. PubMed ID: 18820715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamic and free energy studies of primary resistance mutations in HIV-1 protease-ritonavir complexes.
    Aruksakunwong O; Wolschann P; Hannongbua S; Sompornpisut P
    J Chem Inf Model; 2006; 46(5):2085-92. PubMed ID: 16995739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domain flexibility in retroviral proteases: structural implications for drug resistant mutations.
    Rose RB; Craik CS; Stroud RM
    Biochemistry; 1998 Feb; 37(8):2607-21. PubMed ID: 9485411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.