These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2337621)

  • 41. Amino acid substitutions in the subunit interface enhancing thermostability of Thermoplasma acidophilum citrate synthase.
    Erduran I; Kocabiyik S
    Biochem Biophys Res Commun; 1998 Aug; 249(2):566-71. PubMed ID: 9712738
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phases of membrane polar lipids in aqueous systems.
    Quinn PJ
    Nat Prod Rep; 1984 Dec; 1(6):513-31. PubMed ID: 6399355
    [No Abstract]   [Full Text] [Related]  

  • 43. Phase behavior of carbamyloxyphosphatidylcholine, a sphingolipid analogue.
    Curatolo W; Bali A; Gupta CM
    J Pharm Sci; 1985 Dec; 74(12):1255-8. PubMed ID: 4087190
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Infrared study of the structure and composition of rabbit lens membranes: a comparative analysis of the lipids of the nucleus, cortex and epithelium.
    Lamba OP; Borchman D; Garner WH
    Exp Eye Res; 1993 Jul; 57(1):1-12. PubMed ID: 8405165
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of A13+ on the physical properties of membrane lipids in Thermoplasma acidophilum.
    Vierstra R; Haug A
    Biochem Biophys Res Commun; 1978 Sep; 84(1):138-43. PubMed ID: 215137
    [No Abstract]   [Full Text] [Related]  

  • 46. Contribution to the study of camel milk fat globule membrane.
    Laadhar Karray N; Danthine S; Blecker C; Attia H
    Int J Food Sci Nutr; 2006; 57(5-6):382-90. PubMed ID: 17135029
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of cysteine-43 mutation on thermostability and kinetic properties of citrate synthase from Thermoplasma acidophilum.
    Kocabiyik S; Erduran I; Russel RJ; Danson MJ; Hough DW
    Biochem Biophys Res Commun; 1996 Jul; 224(1):224-8. PubMed ID: 8694816
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A self-consistent chain model for the phase transitions in lipid bilayer membranes.
    Kambara T; Sasaki N
    Biophys J; 1984 Sep; 46(3):371-82. PubMed ID: 6487736
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Factors determining pressure perturbation calorimetry measurements: evidence for the formation of metastable states at lipid phase transitions.
    Wang SL; Epand RM
    Chem Phys Lipids; 2004 Apr; 129(1):21-30. PubMed ID: 14998724
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of the phase transition on the hydration and electrical conductivity of phospholipids.
    Jendrasiak GL; Mendible JC
    Biochim Biophys Acta; 1976 Feb; 424(2):133-48. PubMed ID: 1252486
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of structural modifications on the phase behavior of semi-synthetic cerebroside sulfate.
    Boggs JM; Koshy KM; Rangaraj G
    Biochim Biophys Acta; 1988 Mar; 938(3):361-72. PubMed ID: 3349071
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Correlation of the physicochemical properties of symmetric 1,3-dialkoylamidopropane-based cationic lipids containing single primary and tertiary amine polar head groups with in vitro transfection activity.
    Savva M; Aljaberi A; Feig J; Stolz DB
    Colloids Surf B Biointerfaces; 2005 Jun; 43(1):43-56. PubMed ID: 15916888
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Generation of a large, protonophore-sensitive proton motive force and pH difference in the acidophilic bacteria Thermoplasma acidophilum and Bacillus acidocaldarius.
    Michels M; Bakker EP
    J Bacteriol; 1985 Jan; 161(1):231-7. PubMed ID: 2981803
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Archaeal tetraether lipid coatings-A strategy for the development of membrane analog spacer systems for the site-specific functionalization of medical surfaces.
    Liefeith K; Frant M; Müller U; Stenstad P; Johnsen H; Schmid R
    Biointerphases; 2018 Jan; 13(1):011004. PubMed ID: 29382205
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vesicles made of glycophospholipids with homogeneous (two fluorocarbon or two hydrocarbon) or heterogeneous (one fluorocarbon and one hydrocarbon) hydrophobic double chains.
    Guillod F; Greiner J; Riess JG
    Biochim Biophys Acta; 1996 Jul; 1282(2):283-92. PubMed ID: 8703984
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermodynamic, thermomechanical, and structural properties of a hydrated asymmetric phosphatidylcholine.
    Zhu T; Caffrey M
    Biophys J; 1993 Aug; 65(2):939-54. PubMed ID: 8218917
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Different effects of long- and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: a calorimetric, NMR, and x-ray diffraction study.
    Sot J; Aranda FJ; Collado MI; Goñi FM; Alonso A
    Biophys J; 2005 May; 88(5):3368-80. PubMed ID: 15695626
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The impact of abiotic factors (temperature and glucose) on physicochemical properties of lipids from Yersinia pseudotuberculosis.
    Bakholdina SI; Sanina NM; Krasikova IN; Popova OB; Solov'eva TF
    Biochimie; 2004 Dec; 86(12):875-81. PubMed ID: 15667937
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physical properties and barrier functions of synthetic glyceroglycolipids.
    Endo T; Inoue K; Nojima S
    J Biochem; 1982 Sep; 92(3):953-60. PubMed ID: 7142129
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermotropic phase behavior of phosphatidylcholines with omega-tertiary-butyl fatty acyl chains.
    Lewis RN; Mantsch HH; McElhaney RN
    Biophys J; 1989 Jul; 56(1):183-93. PubMed ID: 2752087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.