These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 23376238)
1. PLGA/TCP composite scaffold incorporating bioactive phytomolecule icaritin for enhancement of bone defect repair in rabbits. Chen SH; Lei M; Xie XH; Zheng LZ; Yao D; Wang XL; Li W; Zhao Z; Kong A; Xiao DM; Wang DP; Pan XH; Wang YX; Qin L Acta Biomater; 2013 May; 9(5):6711-22. PubMed ID: 23376238 [TBL] [Abstract][Full Text] [Related]
2. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study. Chen SH; Wang XL; Xie XH; Zheng LZ; Yao D; Wang DP; Leng Y; Zhang G; Qin L Acta Biomater; 2012 Aug; 8(8):3128-37. PubMed ID: 22543006 [TBL] [Abstract][Full Text] [Related]
3. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin. Xie XH; Wang XL; Zhang G; He YX; Leng Y; Tang TT; Pan X; Qin L J Tissue Eng Regen Med; 2015 Aug; 9(8):961-72. PubMed ID: 23255530 [TBL] [Abstract][Full Text] [Related]
4. Exogenous phytoestrogenic molecule icaritin incorporated into a porous scaffold for enhancing bone defect repair. Wang XL; Xie XH; Zhang G; Chen SH; Yao D; He K; Wang XH; Yao XS; Leng Y; Fung KP; Leung KS; Qin L J Orthop Res; 2013 Jan; 31(1):164-72. PubMed ID: 22807243 [TBL] [Abstract][Full Text] [Related]
5. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954 [TBL] [Abstract][Full Text] [Related]
6. Bioactive PLGA/tricalcium phosphate scaffolds incorporating phytomolecule icaritin developed for calvarial defect repair in rat model. Shi GS; Li YY; Luo YP; Jin JF; Sun YX; Zheng LZ; Lai YX; Li L; Fu GH; Qin L; Chen SH J Orthop Translat; 2020 Sep; 24():112-120. PubMed ID: 32775203 [TBL] [Abstract][Full Text] [Related]
7. Use of a three-dimensional printed polylactide-coglycolide/tricalcium phosphate composite scaffold incorporating magnesium powder to enhance bone defect repair in rabbits. Yu W; Li R; Long J; Chen P; Hou A; Li L; Sun X; Zheng G; Meng H; Wang Y; Wang A; Sui X; Guo Q; Tao S; Peng J; Qin L; Lu S; Lai Y J Orthop Translat; 2019 Jan; 16():62-70. PubMed ID: 30723682 [TBL] [Abstract][Full Text] [Related]
8. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology. Yu D; Li Q; Mu X; Chang T; Xiong Z Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295 [TBL] [Abstract][Full Text] [Related]
9. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits. Lai Y; Cao H; Wang X; Chen S; Zhang M; Wang N; Yao Z; Dai Y; Xie X; Zhang P; Yao X; Qin L Biomaterials; 2018 Jan; 153():1-13. PubMed ID: 29096397 [TBL] [Abstract][Full Text] [Related]
10. Ti Gu C; Chen H; Zhao Y; Xi H; Tan X; Xue P; Sun G; Jiang X; Du B; Liu X Biomed Mater; 2024 Aug; 19(5):. PubMed ID: 39121886 [TBL] [Abstract][Full Text] [Related]
11. Phytomolecule icaritin incorporated PLGA/TCP scaffold for steroid-associated osteonecrosis: Proof-of-concept for prevention of hip joint collapse in bipedal emus and mechanistic study in quadrupedal rabbits. Qin L; Yao D; Zheng L; Liu WC; Liu Z; Lei M; Huang L; Xie X; Wang X; Chen Y; Yao X; Peng J; Gong H; Griffith JF; Huang Y; Zheng Y; Feng JQ; Liu Y; Chen S; Xiao D; Wang D; Xiong J; Pei D; Zhang P; Pan X; Wang X; Lee KM; Cheng CY Biomaterials; 2015 Aug; 59():125-43. PubMed ID: 25968462 [TBL] [Abstract][Full Text] [Related]
12. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold. Hao W; Hu YY; Wei YY; Pang L; Lv R; Bai JP; Xiong Z; Jiang M Cells Tissues Organs; 2008; 187(2):89-102. PubMed ID: 17938566 [TBL] [Abstract][Full Text] [Related]
13. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Lai Y; Li Y; Cao H; Long J; Wang X; Li L; Li C; Jia Q; Teng B; Tang T; Peng J; Eglin D; Alini M; Grijpma DW; Richards G; Qin L Biomaterials; 2019 Mar; 197():207-219. PubMed ID: 30660996 [TBL] [Abstract][Full Text] [Related]
14. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062 [TBL] [Abstract][Full Text] [Related]
15. Effects of VEGF loading on scaffold-confined vascularization. Lindhorst D; Tavassol F; von See C; Schumann P; Laschke MW; Harder Y; Bormann KH; Essig H; Kokemüller H; Kampmann A; Voss A; Mülhaupt R; Menger MD; Gellrich NC; Rücker M J Biomed Mater Res A; 2010 Dec; 95(3):783-92. PubMed ID: 20725981 [TBL] [Abstract][Full Text] [Related]
16. Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model. Ge Z; Tian X; Heng BC; Fan V; Yeo JF; Cao T Biomed Mater; 2009 Apr; 4(2):021001. PubMed ID: 19208943 [TBL] [Abstract][Full Text] [Related]
17. Biomaterial scaffolds in cartilage-subchondral bone defects influencing the repair of autologous articular cartilage transplants. Fan W; Wu C; Miao X; Liu G; Saifzadeh S; Sugiyama S; Afara I; Crawford R; Xiao Y J Biomater Appl; 2013 May; 27(8):979-89. PubMed ID: 22684516 [TBL] [Abstract][Full Text] [Related]
18. Stimulation of healing within a rabbit calvarial defect by a PCL/PLGA scaffold blended with TCP using solid freeform fabrication technology. Shim JH; Moon TS; Yun MJ; Jeon YC; Jeong CM; Cho DW; Huh JB J Mater Sci Mater Med; 2012 Dec; 23(12):2993-3002. PubMed ID: 22960800 [TBL] [Abstract][Full Text] [Related]
19. Effect of poly (lactide-co-glycolide) (PLGA)-coated beta-tricalcium phosphate on the healing of rat calvarial bone defects: a comparative study with pure-phase beta-tricalcium phosphate. Bizenjima T; Takeuchi T; Seshima F; Saito A Clin Oral Implants Res; 2016 Nov; 27(11):1360-1367. PubMed ID: 26748831 [TBL] [Abstract][Full Text] [Related]
20. PLGA/β-TCP composite scaffold incorporating salvianolic acid B promotes bone fusion by angiogenesis and osteogenesis in a rat spinal fusion model. Lin S; Cui L; Chen G; Huang J; Yang Y; Zou K; Lai Y; Wang X; Zou L; Wu T; Cheng JCY; Li G; Wei B; Lee WYW Biomaterials; 2019 Mar; 196():109-121. PubMed ID: 29655516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]