BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 23376267)

  • 1. Hydrolysis of Baltic amber during thermal ageing--an infrared spectroscopic approach.
    Pastorelli G; Shashoua Y; Richter J
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 106():124-8. PubMed ID: 23376267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence concerning oxidation as a surface reaction in Baltic amber.
    Pastorelli G; Richter J; Shashoua Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():268-9. PubMed ID: 22277623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-analytical approach for the assessment of the provenience of geological amber: the collection of the Earth Sciences Museum of Bari (Italy).
    van der Werf ID; Monno A; Fico D; Germinario G; De Benedetto GE; Sabbatini L
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2182-2196. PubMed ID: 27234824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier Transform Raman and Statistical Analysis of Thermally Altered Samples of Amber.
    Badea GI; Caggiani MC; Colomban P; Mangone A; Teodor ED; Teodor ES; Radu GL
    Appl Spectrosc; 2015 Dec; 69(12):1457-63. PubMed ID: 26555646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman microspectroscopic studies of amber resins with insect inclusions.
    Edwards HG; Farwell DW; Villar SE
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1089-95. PubMed ID: 17320468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of diamond crystal ATR FTIR spectroscopy to the characterization of ambers.
    Guiliano M; Asia L; Onoratini G; Mille G
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Aug; 67(5):1407-11. PubMed ID: 17129753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass spectrometry in the characterization of ambers. II. Free succinic acid in fossil resins of different origin.
    Tonidandel L; Ragazzi E; Traldi P
    Rapid Commun Mass Spectrom; 2009 Feb; 23(3):403-8. PubMed ID: 19125432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the degradation of polyurethane foams after artificial and natural ageing by using pyrolysis-gas chromatography/mass spectrometry and headspace-solid phase microextraction-gas chromatography/mass spectrometry.
    Lattuati-Derieux A; Thao-Heu S; Lavédrine B
    J Chromatogr A; 2011 Jul; 1218(28):4498-508. PubMed ID: 21645901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Infrared Spectral Characteristics of Ambers from Three Main Sources (Baltic, Dominica and Myanmar)].
    Wang Y; Shi GH; Shi W; Wu RH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Aug; 35(8):2164-9. PubMed ID: 26672286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Baltic amber teething necklaces: could succinic acid leaching from beads provide anti-inflammatory effects?
    Nissen MD; Lau ETL; Cabot PJ; Steadman KJ
    BMC Complement Altern Med; 2019 Jul; 19(1):162. PubMed ID: 31277614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of treated Baltic amber by FTIR and FT-Raman - A feasibility study.
    Karolina D; Maja MS; Magdalena DS; Grażyna Ż
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121404. PubMed ID: 35609390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The earliest Baltic amber in Western Europe.
    Murillo-Barroso M; Cólliga AM; Martinón-Torres M
    Sci Rep; 2023 Aug; 13(1):14250. PubMed ID: 37653106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal desorption/gas chromatography/mass spectrometry approach for characterization of the volatile fraction from amber specimens: a possibility of tracking geological origins.
    Vîrgolici M; Ponta C; Manea M; Neguţ D; Cutrubinis M; Moise I; Suvăilă R; Teodor E; Sârbu C; Medvedovici A
    J Chromatogr A; 2010 Mar; 1217(12):1977-87. PubMed ID: 20149381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tortoiseshell or Polymer? Spectroscopic Analysis to Redefine a Purported Tortoiseshell Box with Gold Decorations as a Plastic Box with Brass.
    Pereira A; Caldeira AT; Maduro B; Vandenabeele P; Candeias A
    Appl Spectrosc; 2016 Jan; 70(1):68-75. PubMed ID: 26767634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological and organic spectroscopic studies of a 44-million-year-old leaf beetle (Coleoptera: Chrysomelidae) in amber with endogenous remains of chitin.
    Mitchell JL; McKellar RC; Barbi M; Coulson IM; Bukejs A
    Sci Rep; 2023 Apr; 13(1):5876. PubMed ID: 37041264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass spectrometry in the characterization of ambers. I. Studies of amber samples of different origin and ages by laser desorption ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization mass spectrometry.
    Tonidandel L; Ragazzi E; Roghi G; Traldi P
    Rapid Commun Mass Spectrom; 2008; 22(5):630-8. PubMed ID: 18247431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amber in prehistoric Iberia: New data and a review.
    Murillo-Barroso M; Peñalver E; Bueno P; Barroso R; de Balbín R; Martinón-Torres M
    PLoS One; 2018; 13(8):e0202235. PubMed ID: 30157208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mid-infrared spectroscopy for characterization of Baltic amber (succinite).
    Wagner-Wysiecka E
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 196():418-431. PubMed ID: 29499571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence and Fourier-transform infrared spectroscopy for the analysis of iconic Italian design lamps made of polymeric materials.
    Toja F; Nevin A; Comelli D; Levi M; Cubeddu R; Toniolo L
    Anal Bioanal Chem; 2011 Mar; 399(9):2977-86. PubMed ID: 21079933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress degradation studies of nelfinavir mesylate by Fourier transform infrared spectroscopy.
    Singh P; Mehrotra R; Bakhshi AK
    J Pharm Biomed Anal; 2010 Nov; 53(3):287-94. PubMed ID: 20399586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.