These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 23376349)

  • 1. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads.
    Novák P; Neumann P; Pech J; Steinhaisl J; Macas J
    Bioinformatics; 2013 Mar; 29(6):792-3. PubMed ID: 23376349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2.
    Novák P; Neumann P; Macas J
    Nat Protoc; 2020 Nov; 15(11):3745-3776. PubMed ID: 33097925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RepLong: de novo repeat identification using long read sequencing data.
    Guo R; Li YR; He S; Ou-Yang L; Sun Y; Zhu Z
    Bioinformatics; 2018 Apr; 34(7):1099-1107. PubMed ID: 29126180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data.
    Novák P; Neumann P; Macas J
    BMC Bioinformatics; 2010 Jul; 11():378. PubMed ID: 20633259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved approach for reconstructing consensus repeats from short sequence reads.
    Chu C; Pei J; Wu Y
    BMC Genomics; 2018 Aug; 19(Suppl 6):566. PubMed ID: 30367582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transposon fingerprinting using low coverage whole genome shotgun sequencing in cacao (Theobroma cacao L.) and related species.
    Sveinsson S; Gill N; Kane NC; Cronk Q
    BMC Genomics; 2013 Jul; 14():502. PubMed ID: 23883295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo assembly of bacterial genomes with repetitive DNA regions by dnaasm application.
    Kuśmirek W; Nowak R
    BMC Bioinformatics; 2018 Jul; 19(1):273. PubMed ID: 30021513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.
    Chu C; Li X; Wu Y
    BMC Genomics; 2019 Jun; 20(Suppl 5):426. PubMed ID: 31167639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete Sequence Construction of the Highly Repetitive Ribosomal RNA Gene Repeats in Eukaryotes Using Whole Genome Sequence Data.
    Agrawal S; Ganley AR
    Methods Mol Biol; 2016; 1455():161-81. PubMed ID: 27576718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of highly repetitive genomes using short reads: the genome of discrete typing unit III Trypanosoma cruzi strain 231.
    Baptista RP; Reis-Cunha JL; DeBarry JD; Chiari E; Kissinger JC; Bartholomeu DC; Macedo AM
    Microb Genom; 2018 Apr; 4(4):. PubMed ID: 29442617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graph mining for next generation sequencing: leveraging the assembly graph for biological insights.
    Warnke-Sommer J; Ali H
    BMC Genomics; 2016 May; 17():340. PubMed ID: 27154001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The repetitive DNA landscape in Avena (Poaceae): chromosome and genome evolution defined by major repeat classes in whole-genome sequence reads.
    Liu Q; Li X; Zhou X; Li M; Zhang F; Schwarzacher T; Heslop-Harrison JS
    BMC Plant Biol; 2019 May; 19(1):226. PubMed ID: 31146681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repetitive DNA in eukaryotic genomes.
    Biscotti MA; Olmo E; Heslop-Harrison JS
    Chromosome Res; 2015 Sep; 23(3):415-20. PubMed ID: 26514350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of abundant repetitive sequences in Eragrostis tef cv. Enatite genome.
    Gebre YG; Bertolini E; Pè ME; Zuccolo A
    BMC Plant Biol; 2016 Feb; 16():39. PubMed ID: 26833063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TrawlerWeb: an online de novo motif discovery tool for next-generation sequencing datasets.
    Dang LT; Tondl M; Chiu MHH; Revote J; Paten B; Tano V; Tokolyi A; Besse F; Quaife-Ryan G; Cumming H; Drvodelic MJ; Eichenlaub MP; Hallab JC; Stolper JS; Rossello FJ; Bogoyevitch MA; Jans DA; Nim HT; Porrello ER; Hudson JE; Ramialison M
    BMC Genomics; 2018 Apr; 19(1):238. PubMed ID: 29621972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity and evolution of the repetitive genomic content in Cannabis sativa.
    Pisupati R; Vergara D; Kane NC
    BMC Genomics; 2018 Feb; 19(1):156. PubMed ID: 29466945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats.
    Wicker T; Narechania A; Sabot F; Stein J; Vu GT; Graner A; Ware D; Stein N
    BMC Genomics; 2008 Oct; 9():518. PubMed ID: 18976483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Illumina error correction near highly repetitive DNA regions improves de novo genome assembly.
    Heydari M; Miclotte G; Van de Peer Y; Fostier J
    BMC Bioinformatics; 2019 Jun; 20(1):298. PubMed ID: 31159722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ESAP plus: a web-based server for EST-SSR marker development.
    Ponyared P; Ponsawat J; Tongsima S; Seresangtakul P; Akkasaeng C; Tantisuwichwong N
    BMC Genomics; 2016 Dec; 17(Suppl 13):1035. PubMed ID: 28155670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RF: a method for filtering short reads with tandem repeats for genome mapping.
    Misawa K
    Genomics; 2013 Jul; 102(1):35-7. PubMed ID: 23542167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.