These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 23376549)
1. Global population structure and migration patterns suggest significant population differentiation among isolates of Pyrenophora tritici-repentis. Gurung S; Short DP; Adhikari TB Fungal Genet Biol; 2013 Mar; 52():32-41. PubMed ID: 23376549 [TBL] [Abstract][Full Text] [Related]
2. Genetic differentiation at microsatellite loci among populations of Mycosphaerella graminicola from California, Indiana, Kansas, and North Dakota. Gurung S; Goodwin SB; Kabbage M; Bockus WW; Adhikari TB Phytopathology; 2011 Oct; 101(10):1251-9. PubMed ID: 21692645 [TBL] [Abstract][Full Text] [Related]
3. Global migration patterns in the fungal wheat pathogen Phaeosphaeria nodorum. Stukenbrock EH; Banke S; McDonald BA Mol Ecol; 2006 Sep; 15(10):2895-904. PubMed ID: 16911209 [TBL] [Abstract][Full Text] [Related]
4. Genetic diversity and population structure of Zymoseptoria tritici in Ethiopia as revealed by microsatellite markers. Mekonnen T; Haileselassie T; Goodwin SB; Tesfayea K Fungal Genet Biol; 2020 Aug; 141():103413. PubMed ID: 32442667 [TBL] [Abstract][Full Text] [Related]
5. Genetic structure of South Australian Pyrenophora teres populations as revealed by microsatellite analyses. Bogacki P; Keiper FJ; Oldach KH Fungal Biol; 2010 Oct; 114(10):834-41. PubMed ID: 20943193 [TBL] [Abstract][Full Text] [Related]
6. Genetic structure of Phaeosphaeria nodorum populations in the north-central and midwestern United States. Adhikari TB; Ali S; Burlakoti RR; Singh PK; Mergoum M; Goodwin SB Phytopathology; 2008 Jan; 98(1):101-7. PubMed ID: 18943244 [TBL] [Abstract][Full Text] [Related]
7. Population Genetic Analysis of a Global Collection of Pyrenophora tritici-repentis, Causal Agent of Tan Spot of Wheat. Friesen TL; Ali S; Klein KK; Rasmussen JB Phytopathology; 2005 Oct; 95(10):1144-50. PubMed ID: 18943466 [TBL] [Abstract][Full Text] [Related]
8. Emergence of tan spot disease caused by toxigenic Pyrenophora tritici-repentis in Australia is not associated with increased deployment of toxin-sensitive cultivars. Oliver RP; Lord M; Rybak K; Faris JD; Solomon PS Phytopathology; 2008 May; 98(5):488-91. PubMed ID: 18943215 [TBL] [Abstract][Full Text] [Related]
9. Characterization of Laribi M; Akhavan A; Ben M'Barek S; Yahyaoui AH; Strelkov SE; Sassi K Plant Dis; 2022 Feb; 106(2):464-474. PubMed ID: 34184550 [No Abstract] [Full Text] [Related]
10. Microsatellite markers reveal genetic differentiation among populations of Sclerotinia sclerotiorum from Australian canola fields. Sexton AC; Howlett BJ Curr Genet; 2004 Dec; 46(6):357-65. PubMed ID: 15549318 [TBL] [Abstract][Full Text] [Related]
11. GENETIC CHARACTERIZATION OF AN ALGERIAN POPULATION OF MYCOSPHAERELLA GRAMINICOLA WITH MICROSATELLITE MARKERS. Allioui N; Siah A; Randoux B; Brinis L; Reignault P; Halama P Commun Agric Appl Biol Sci; 2015; 80(3):583-7. PubMed ID: 27141757 [TBL] [Abstract][Full Text] [Related]
12. [Genetic structure of the Russian populations of Pyrenophora tritici-repentis, determined by using microsatellite markers]. Mironenko NV; Baranova OA; Kovalenko NM; Mikhailova LA; Rosseva LP Genetika; 2016 Aug; 52(8):885-94. PubMed ID: 29368882 [TBL] [Abstract][Full Text] [Related]
13. Genetic diversity of the Chestnut blight fungus Cryphonectria parasitica in four French populations assessed by microsatellite markers. Breuillin F; Dutech C; Robin C Mycol Res; 2006 Mar; 110(Pt 3):288-96. PubMed ID: 16377166 [TBL] [Abstract][Full Text] [Related]
14. A proteomic evaluation of Pyrenophora tritici-repentis, causal agent of tan spot of wheat, reveals major differences between virulent and avirulent isolates. Cao T; Kim YM; Kav NN; Strelkov SE Proteomics; 2009 Mar; 9(5):1177-96. PubMed ID: 19206107 [TBL] [Abstract][Full Text] [Related]
15. Strong genetic differentiation between North American and European populations of Phytophthora alni subsp. uniformis. Aguayo J; Adams GC; Halkett F; Catal M; Husson C; Nagy ZÁ; Hansen EM; Marçais B; Frey P Phytopathology; 2013 Feb; 103(2):190-9. PubMed ID: 23095465 [TBL] [Abstract][Full Text] [Related]
16. Molecular evidence for recent founder populations and human-mediated migration in the barley scald pathogen Rhynchosporium secalis. Linde CC; Zala M; McDonald BA Mol Phylogenet Evol; 2009 Jun; 51(3):454-64. PubMed ID: 19289174 [TBL] [Abstract][Full Text] [Related]
17. Genetic analysis of resistance to Pyrenophora tritici-repentis races 1 and 5 in tetraploid and hexaploid wheat. Singh PK; Mergoum M; Ali S; Adhikari TB; Hughes GR Phytopathology; 2008 Jun; 98(6):702-8. PubMed ID: 18944295 [TBL] [Abstract][Full Text] [Related]
18. Cytochrome b gene sequence and structure of Pyrenophora teres and P. tritici-repentis and implications for QoI resistance. Sierotzki H; Frey R; Wullschleger J; Palermo S; Karlin S; Godwin J; Gisi U Pest Manag Sci; 2007 Mar; 63(3):225-33. PubMed ID: 17212344 [TBL] [Abstract][Full Text] [Related]
19. Virulence profile and genetic structure of a North Dakota population of Pyrenophora teres f. teres, the causal agent of net form net blotch of barley. Liu ZH; Zhong S; Stasko AK; Edwards MC; Friesen TL Phytopathology; 2012 May; 102(5):539-46. PubMed ID: 22494251 [TBL] [Abstract][Full Text] [Related]
20. Microsatellite markers provide evidence for sexual reproduction of Mycosphaerella graminicola in Saskatchewan. Razavi M; Hughes GR Genome; 2004 Oct; 47(5):789-94. PubMed ID: 15499393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]