These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23376551)

  • 1. The perceptual enhancement of tones by frequency shifts.
    Demany L; Carcagno S; Semal C
    Hear Res; 2013 Apr; 298():10-6. PubMed ID: 23376551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing a tone by shifting its frequency or intensity.
    Erviti M; Semal C; Demany L
    J Acoust Soc Am; 2011 Jun; 129(6):3837-45. PubMed ID: 21682407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Principal pitch of frequency-modulated tones with asymmetrical modulation waveform: a comparison of models.
    Etchemendy PE; Eguia MC; Mesz B
    J Acoust Soc Am; 2014 Mar; 135(3):1344-55. PubMed ID: 24606273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning properties of the auditory frequency-shift detectors.
    Demany L; Pressnitzer D; Semal C
    J Acoust Soc Am; 2009 Sep; 126(3):1342-8. PubMed ID: 19739748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency-shift detectors bind binaural as well as monaural frequency representations.
    Carcagno S; Semal C; Demany L
    J Exp Psychol Hum Percept Perform; 2011 Dec; 37(6):1976-87. PubMed ID: 21728457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate perception and the auditory 40-Hz steady-state fields evoked by two-tone sequences.
    Gutschalk A; Oldermann K; Rupp A
    Hear Res; 2009 Nov; 257(1-2):83-92. PubMed ID: 19699286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perceived continuity and pitch shifts for complex tones with unresolved harmonics.
    Plack CJ; Watkinson RK
    J Acoust Soc Am; 2010 Oct; 128(4):1922-9. PubMed ID: 20968364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory change detection: simple sounds are not memorized better than complex sounds.
    Demany L; Trost W; Serman M; Semal C
    Psychol Sci; 2008 Jan; 19(1):85-91. PubMed ID: 18181796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An adaptive clinical test of temporal resolution: within-channel and across-channel gap detection.
    Lister JJ; Roberts RA; Krause JC; Debiase D; Carlson H
    Int J Audiol; 2011 Jun; 50(6):375-84. PubMed ID: 21303227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quantitative analysis of spectral mechanisms involved in auditory detection of coloration by a single wall reflection.
    Buchholz JM
    Hear Res; 2011 Jul; 277(1-2):192-203. PubMed ID: 21236325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective listening of concurrent auditory stimuli: an event-related potential study.
    Rao A; Zhang Y; Miller S
    Hear Res; 2010 Sep; 268(1-2):123-32. PubMed ID: 20595021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the possible role of frequency-shift detectors in the ability to hear out partials in complex tones.
    Moore BC; Kenyon O; Glasberg BR; Demany L
    Adv Exp Med Biol; 2013; 787():127-35. PubMed ID: 23716217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of tonotopicity, adaptation, modulation tuning, and temporal coherence in "primitive" auditory stream segregation.
    Christiansen SK; Jepsen ML; Dau T
    J Acoust Soc Am; 2014 Jan; 135(1):323-33. PubMed ID: 24437772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separate contributions of enhanced and suppressed sensitivity to the auditory attentional filter.
    Tan MN; Robertson D; Hammond GR
    Hear Res; 2008 Jul; 241(1-2):18-25. PubMed ID: 18524512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of temporal fine structure information for the low pitch of high-frequency complex tones.
    Santurette S; Dau T
    J Acoust Soc Am; 2011 Jan; 129(1):282-92. PubMed ID: 21303009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neurocognitive model of recognition and pitch segregation.
    McLachlan N
    J Acoust Soc Am; 2011 Nov; 130(5):2845-54. PubMed ID: 22087913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pitch-matching accuracy in trained singers and untrained individuals: the impact of musical interference and noise.
    Estis JM; Dean-Claytor A; Moore RE; Rowell TL
    J Voice; 2011 Mar; 25(2):173-80. PubMed ID: 20456914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hearing sensitivity to shifts of rippled-spectrum patterns.
    Nechaev DI; Supin AY
    J Acoust Soc Am; 2013 Oct; 134(4):2913-22. PubMed ID: 24116427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related difference in melodic pitch perception is probably mediated by temporal processing: empirical and computational evidence.
    Russo FA; Ives DT; Goy H; Pichora-Fuller MK; Patterson RD
    Ear Hear; 2012; 33(2):177-86. PubMed ID: 22367092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal coherence versus harmonicity in auditory stream formation.
    Micheyl C; Kreft H; Shamma S; Oxenham AJ
    J Acoust Soc Am; 2013 Mar; 133(3):EL188-94. PubMed ID: 23464127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.